Your search
Results 19 resources
-
The cosmological constant is normally introduced as an additional term entering the Einstein–Hilbert (EH) action. In this letter, we demonstrate that, instead, it appears naturally from the standard EH action as an invariant term emerging from spacetime symmetries. We then demonstrate that the same constraint emerging from this invariant suppresses the short wavelength modes and it favors the long wavelength ones. In this way, inside the proposed formulation, the observed value for the vacuum energy density is obtained naturally from the zero-point quantum fluctuations.
-
By using both, the weak-value formulation as well as the standard probabilistic approach, we analyze the Hardy's experiment introducing a complex and dimensionless parameter ($\epsilon$) which eliminates the assumption of complete annihilation when both, the electron and the positron departing from a common origin, cross the intersection point $P$. We then find that the paradox does not exist for all the possible values taken by the parameter. The apparent paradox only appears when $\epsilon=1$; however, even in this case we can interpret this result as a natural consequence of the fact that the particles can cross the point $P$, but at different times due to a natural consequence of the energy-time uncertainty principle.
-
By using the Hamiltonian formulation, we demonstrate that the Merton-Garman equation emerges naturally from the Black-Scholes equation after imposing invariance (symmetry) under local (gauge) transformations over changes in the stock price. This is the case because imposing gauge symmetry implies the appearance of an additional field, which corresponds to the stochastic volatility. The gauge symmetry then imposes some constraints over the free-parameters of the Merton-Garman Hamiltonian. Finally, we analyze how the stochastic volatility gets massive dynamically via Higgs mechanism.
-
By using the Hamiltonian formulation, we demonstrate that the Merton-Garman equation emerges naturally from the Black-Scholes equation after imposing invariance (symmetry) under local (gauge) transformations over changes in the stock price. This is the case because imposing gauge symmetry implies the appearance of an additional field, which corresponds to the stochastic volatility. The gauge symmetry then imposes some constraints over the free parameters of the Merton-Garman Hamiltonian. Finally, we analyze how the stochastic volatility gets massive dynamically via Higgs mechanism.
-
In any physical system, when we move from short to large scales, new spacetime symmetries emerge which help us to simplify the dynamics of the system. In this letter we demonstrate that certain variations on the symmetries of general relativity at large scales generate the effects equivalent to dark matter ones. In particular, we reproduce the Tully-Fisher law, consistent with the predictions proposed by MOND. Additionally, we demonstrate that the dark matter effects derived in this way are consistent with the predictions suggested by MOND, without modifying gravity.
-
We demonstrate that black hole evaporation can be modeled as a process where one symmetry of the system is spontaneously broken continuously. We then identify three free parameters of the system. The sign of one of the free parameters governs whether the particles emitted by the black hole are fermions or bosons. The present model explains why the black hole evaporation process is so universal. Interestingly, this universality emerges naturally inside certain modifications of gravity.
-
In the paper carried out by Wenjun et al. [Phys. Rev. A 95, 032124 (2017)], a generalization of the James effective dynamics theory based on a first version of the James method was presented. However, we contend that this is not a very rigorous way of deriving the effective third-order expansion for an interaction Hamiltonian with harmonic time-dependence. In fact, here we show that the third-order Hamiltonian obtained by Wenjun et al. is not Hermitian for general situations when we consider time dependence. Its non-Hermitian nature arises from the foundation of the theory itself. In this comment paper, the most general expression of the effective Hamiltonian expanded up to third order is obtained. Our derived effective Hamiltonian is Hermitian even in situations where we have time dependence.
-
The mutual information method has demonstrated to be very useful for deriving the potential order parameter of a system. Although the method suggests some constraints which help to define this quantity, there is still some freedom in the definition. The method then results inefficient for cases where we have order parameters with a large number of constants in the expansion, which happens when we have many degenerate vacuums. Here, we introduce some additional constraints based on the existence of broken symmetries, which help us to reduce the arbitrariness in the definitions of the order parameter in the proposed mutual information method.
-
We review some general aspects about the Black–Scholes equation, which is used for predicting the fair price of an option inside the stock market. Our analysis includes the symmetry properties of the equation and its solutions. We use the Hamiltonian formulation for this purpose. Taking into account that the volatility inside the Black–Scholes equation is a parameter, we then introduce the Merton–Garman equation, where the volatility is stochastic, and then it can be perceived as a field. We then show how the Black–Scholes equation and the Merton–Garman one are locally equivalent by imposing a gauge symmetry under changes in the prices over the Black–Scholes equation. This demonstrates that the stochastic volatility emerges naturally from symmetry arguments. Finally, we analyze the role of the volatility on the decisions taken by the holders of the options when they use the solution of the Black–Scholes equation as a tool for making investment decisions.
-
The Black-Scholes equation is famous for predicting values for the prices of Options inside the stock market scenario. However, it has the limitation of depending on the estimated value for the volatility. On the other hand, several Machine learning techniques have been employed for predicting the values of the same quantity. In this paper we analyze some fundamental properties of the Black-Scholes equation and we then propose a way to train its free-parameters, the volatility in particular. This with the purpose of using this parameter as the fundamental one to be learned by a Machine Learning system and then improve the predictions in the stock market.
-
Industrial organization, theory of the firm and boundaries of the firm are well established fields of study involved in the size, structure and scope of a corporate entity (i.e. firm) to the market. However, a key characteristic of corporate entities is that economic concerns (costs and profit) is the overriding or dominant factor. This paper attempts to apply the above mentioned concepts to organizations such as public institutions where economic concerns are secondary considerations, to seek a more objective analysis on what the structure and scope of such organizations should be
-
The Revenue Management (RM) problem in airlines for a fixed capacity, single resource and two classes has been solved before by using a standard formalism. In this paper we propose a model for RM by using the semi-classical approach of the Quantum Harmonic Oscillator. We then extend the model to include external factors affecting the people’s decisions, particularly those where collective decisions emerge.
-
We prove the consistency of the different approaches for deriving the black hole radiation for the spherically symmetric case inside the theory of Massive Gravity. By comparing the results obtained by using the Bogoliubov transformations with those obtained by using the Path Integral formulation, we find that in both cases, the presence of the extra-degrees of freedom creates the effect of extra-particles creation due to the distortions on the definitions of time defined by the different observers at large scales. This, however, does not mean extra-particle creation at the horizon level. Instead, the apparent additional particles perceived at large scales emerge from how distant observers define their time coordinate, which is distorted due to the existence of extra-degrees of freedom.
-
The global food industry generates substantial waste, posing significant environmental, economic, and social challenges. This dissertation explores circular business strategies for food waste management, aiming to develop an efficient model that integrates circular economy principles and innovative technologies. Key research questions include: What are current food waste management practices? How can circular economy principles reduce food waste effectively? What role can technology play in improving these systems? The study also examines barriers to implementation and identifies gaps in existing literature. The methodology involves a comprehensive literature review, case studies, and the development of a detailed mathematical model. The literature review covers circular economy concepts, current food waste treatment technologies, machine learning and Al applications in waste management. Case studies from various countries provide insights into regulatory frameworks and innovative solutions. Central to this research is the mathematical modelling of food waste management systems. The model employs Hamiltonian and/or Lagrangian formulations to optimise waste transportation and processing. This approach allows for the simulation of various scenarios, helping to identify the most efficient pathways for food waste reduction and resource recovery. The model also incorporates phase transitions better to understand the dynamics of waste generation and treatment processes. Phase transitions mark changes on tendencies and in this case they help us to evaluate the viability of the construction of a fast track for the transportation of food waste in any city. Results indicate that adopting circular economy principles in food waste management is feasible and beneficial. Effective strategies include bioplastics, insectutilisation, and machine learning models for waste prediction and management. The developed mathematical model suggests efficient waste transportation through a coupled network approach, ensuring rapid and effective waste evacuation. The research highlights the importance of technological integration and cross-sector collaboration for sustainable food waste management. It also stresses the need for robust regulatory frameworks and consumer education to drive behavioural changes and support circular practices
-
The spontaneous symmetry breaking phenomena applied to Quantum Finance considers that the martingale state in the stock market corresponds to a ground (vacuum) state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena completely ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock markets.
-
We are delighted to present this special issue editorial for Neural Computing and Applications special issue on LatinX in AI research. This special issue brings together a collection of articles that explore machine learning and artificial intelligence research from various perspectives, aiming to provide a comprehensive and in-depth understanding of what LatinX researchers are working on in the field. In this editorial, we will introduce the overarching theme of the special issue, highlight the significance of the selected papers, and offer insights into the contributions made by the authors. The LatinX in AI organization was launched in 2018, with leaders from organizations in Artificial Intelligence, Education, Research, Engineering, and Social Impact with a purpose to together create a group that would be focused on “Creating Opportunity for LatinX in AI.” The main goal is to increase the representation of LatinX professionals in the AI industry. LatinX in AI Org and programs are volunteer-run and fiscally sponsored by the Accel AI Institute, 501(c)3 Non-Profit.
-
It is known that the probability is not a conserved quantity in the stock market, given the fact that it corresponds to an open system. In this paper we analyze the flow of probability in this system by expressing the ideal Black-Scholes equation in the Hamiltonian form. We then analyze how the non-conservation of probability affects the stability of the prices of the Stocks. Finally, we find the conditions under which the probability might be conserved in the market, challenging in this way the non-Hermitian nature of the Black-Scholes Hamiltonian.
-
In this chapter, a mathematical model explaining generically the propagation of a pandemic is proposed, helping in this way to identify the fundamental parameters related to the outbreak in general. Three free parameters for the pandemic are identified, which can be finally reduced to only two independent parameters. The model is inspired in the concept of spontaneous symmetry breaking, used normally in quantum field theory, and it provides the possibility of analyzing the complex data of the pandemic in a compact way. Data from 12 different countries are considered and the results presented. The application of nonlinear quantum physics equations to model epidemiologic time series is an innovative and promising approach.
-
At the beginning of 2020, the World Health Organization (WHO) started a coordinated global effort to counterattack the potential exponential spread of the SARS-Cov2 virus, responsible for the coronavirus disease, officially named COVID-19. This comprehensive initiative included a research roadmap published in March 2020, including nine dimensions, from epidemiological research to diagnostic tools and vaccine development. With an unprecedented case, the areas of study related to the pandemic received funds and strong attention from different research communities (universities, government, industry, etc.), resulting in an exponential increase in the number of publications and results achieved in such a small window of time. Outstanding research cooperation projects were implemented during the outbreak, and innovative technologies were developed and improved significantly. Clinical and laboratory processes were improved, while managerial personnel were supported by a countless number of models and computational tools for the decision-making process. This chapter aims to introduce an overview of this favorable scenario and highlight a necessary discussion about ethical issues in research related to the COVID-19 and the challenge of low-quality research, focusing only on the publication of techniques and approaches with limited scientific evidence or even practical application. A legacy of lessons learned from this unique period of human history should influence and guide the scientific and industrial communities for the future.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Business and Law
(17)
- Alexandre Lobo (4)
- Ivan Arraut (16)
- Sergio Gomes (1)
Resource type
- Book Section (2)
- Conference Paper (1)
- Journal Article (12)
- Preprint (2)
- Thesis (2)