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Abstract: The information paradox suggests that the black hole loses information when it
emits radiation. In this way, the spectrum of radiation corresponds to a mixed (non-pure)
quantum state even if the internal state generating the black hole is expected to be pure
in essence. In this paper we propose an argument solving this paradox by developing an
understanding of the process by which spontaneous symmetry breaks when a black hole
selects one of the many possible ground states and emits radiation as a consequence of it.
Here, the particle operator number is the order parameter. This mechanism explains the
connection between the density matrix, corresponding to the pure state describing the black
hole state, and the density matrix describing the spectrum of radiation (mixed quantum
state). From this perspective, we can recover black hole information from the superposition
principle, applied to the different possible order parameters (particle number operators).

Keywords: information paradox; black holes; Hawking radiation; spontaneous symmetry
breaking

PACS: 03.65.−w Quantum mechanics; 03.67.−a Quantum information; 04.62.+v Quantum fields
in curved spacetime; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics

1. Introduction
Black holes are compact objects containing huge amounts of mass in a very small space-

time region [1,2]. They develop a surface called the event horizon. Once a particle enters
the event horizon, classically, it can never escape, no matter how much energy is invested in
the process. Initially, it was believed that black holes were completely black, unable to emit
particles. However, it was subsequently demonstrated by Hawking that the black holes also
emit radiation [3,4]. This result was important because without this emission of radiation,
some fundamental laws of thermodynamics would be violated [5–7]. For example, the
first law of thermodynamics requires an appropriate definition of temperature in order
to respect energy conservation. The Hawking radiation, however, brought, by itself, one
problem: namely, the famous information paradox [8]. The black hole information paradox
had been formulated by Hawking by the time he discovered the black hole evaporation
process. Hawking realized that while the radiation emerging from a black hole is thermal
in nature, and it only depends on the mass, charge, and angular momentum of the black
hole, there are still an infinite number of ways to generate the same black hole with the
same macroscopic properties. Thus, the same thermal radiation coming from a black hole,
could be developed by any of the infinite possible microstates (internal states) consistent
with the black hole macrostate with mass M, charge Q and angular momentum J. While
each internal configuration of the black hole represents a pure state, the thermal radiation,
being associated with all possible internal configurations, is represented by a mixed quan-
tum state. This is the case because there is no correlation between thermal radiation, and
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as such, information cannot be carried out from the black hole. This lack of correlation
occurs because the backreaction of the emission is not being counted. This is basically
the root of the information paradox. In the past, other authors have proposed potential
solutions to the black hole information problem. In [9], a possible solution was found when
a non-thermal spectrum was found after calculating the backreaction. Then, in [10], it was
demonstrated that there are correlations in a non-thermal spectrum. It was also found
in [11] that entropy is conserved during black hole evaporation. In this paper, we take a
different point of view and we propose an argument for solving the paradox. The starting
point is the fact that black hole evaporation can be expressed as a natural consequence of
the spontaneous breaking of the symmetry under exchange of internal configurations [12].
This symmetry keeps the same mass M, angular momentum L, and charge Q invariant.
From this perspective, the vacuum expectation value of the particle number, defined as
< 0|n̂i|0 >, corresponds to an order parameter, being zero before the formation of the
black hole and non-zero after its formation. When the black hole has some specific mass,
angular momentum, and charge, it has infinite possible ground states. In other words, we
have a vacuum degeneracy, typical from in processes involving spontaneous symmetry
breaking. When the black hole selects one among the many possible ground states, it emits
radiation, and this is equivalent to tracing out all the other possible vacuum states. The
difference between this case and the ordinary breaking of spontaneous symmetry is that
here, we have the possibility of having an entanglement between the different possible
ground states. The information paradox disappears when we sum all the possible order
parameters (particle number operators), showing that this sum must be equal to zero, and
recovering, in this way, the trivial ground state before the gravitational collapse. Then, the
original ground state, before the formation of the black hole, is equal to the sum of all the
possible ground states after the formation of the black hole. We can interpret this as the
possibility of emitting antiparticles in addition to the ordinary particles.

2. The Schwarzschild Solution
For simplicity, we will focus on the Schwarzschild case. For the other cases, the

extension is direct. The metric is defined as [1]

ds2 = −
(

1 − 2GM
r

)
dt2 +

(
1 − 2GM

r

)−1
dr2 + r2dΩ2. (1)

The event horizon is defined at rH = 2GM. Classically, when a particle approaches
a distance smaller than rH , then it cannot escape from the gravitational influence of the
black hole. However, if we use arguments of Quantum Mechanics, then some particles
can escape, giving rise to a spectrum of thermal radiation. The arguments developed by
Hawking are explained in this section.

The Black Hole Evaporation Process

The black hole evaporation process emerges from a comparison between the vacuum
state before the formation of the black hole and the vacuum state after the formation of the
same body [13]. Before the formation of the black hole, the vacuum state is trivial or devoid
of particles, namely

b̂p|0̄ >= 0. (2)

This vacuum state corresponds to the field expansion

ϕ(x, t) = ∑
p

(
fp b̂p + f̄p b̂+p

)
. (3)
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After the formation of the black hole, the vacuum becomes nontrivial, and it is now
defined by

âp|0 >= 0. (4)

This vacuum state then corresponds to the field expansion

ϕ(x, t) = ∑
p

(
pp âp + p̄p â+p + qp ĉp + q̄p ĉ+p

)
. (5)

It is important to remark that the field expansions in Equations (3) and (5) contain
the same amount of information. The difference is with respect to which vacuum state
we expand, and, as a consequence, with respect to which modes we are expanding the
quantum field with. The effects of radiation emerge when we compare the vacuum states of
Equations (2) and (4). This comparison is possible via Bogoliubov transformations, which
are able to relate the quantum operators as

âp = up,p′ b̂p′ − vp,p′ b̂+p′ . (6)

Then, when we try to annihilate the ground state defined in Equation (2) with the
operator âp, Equation (6) suggests

< 0̄|n̂a
p|0̄ >= |vp,p′ |2. (7)

This means that the ground state now is full of particles, appearing through a spectrum
of radiation. It has been proved before that

< 0̄|n̂a
p|0̄ >=

Γp,p′

e
2πω

κ ± 1
. (8)

The fact that the spectrum of radiation emerges from a non-zero value of the Bogoli-
ubov coefficient vp,p′ means that the Hawking radiation emerges from the mix of positive
and negative frequency modes.

3. The Formulation of the Information Paradox
The no-hair theorem of black holes suggests that the physical state of a black hole can

be characterized by its mass M, angular momentum L, and charge Q [1,14]. These three
independent parameters are consistent with the huge amount of possible internal states of a
black hole Ω. Even still, if Hawking’s calculation is right, then this means that the thermal
spectrum is independent of the details regarding how the particles inside the black hole are
arranged [13]. Thus, technically, the information about the internal details of the black hole is
lost. Another way to perceive this is by understanding that while each internal configuration
of the black hole corresponds to a pure quantum state, the spectrum of radiation corresponds
to a mixed quantum state. A pure quantum state obeys a unitary evolution as follows

|ψ(t1) >= U(t1, t2)|ψ(t2) >, (9)

and we can always express it as a ket (wave function). More generally, it is also possible
to express the quantum state through a density matrix, as ρ̂ = |ψ >< ψ|. For pure and
mixed states, the trace of this operator is Tr(ρ̂) = 1. However, although for pure states the
idempotent condition ρ̂2 = ρ̂, or equivalently, Tr(ρ̂2) = 1, for mixed states this condition
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is violated, and, in general, Tr(ρ̂2) ≤ 1. Although there is no ket representation for mixed
states, they can still be expressed with a density matrix of the form

ρ̂ =
N

∑
k=1

pk|ψk >< ψk|. (10)

Here, |ψk > is some set of pure states. Equation (10) is then a superposition of pure states.
The essential idea behind the information paradox is that the black hole radiation is thermal,
because it corresponds to a mixed quantum state, which is a superposition of the pure states
represented by all the possible internal configuration arrangements of the black hole.

4. The Information Paradox from the Perspective of Spontaneous
Symmetry Breaking

The black hole evaporation process can be expressed as a consequence of the mecha-
nism of spontaneous symmetry breaking, where the black hole, having access to a huge
amount of possible ground states, selects one arbitrarily. When this occurs, then the black
hole emits particles in the form of radiation. Each different internal configuration corre-
sponds to a different ground state. In principle, if we follow the standard approaches, then
the different vacuum states would correspond to different Hilbert spaces at the thermody-
namic limit [15]. Yet still, we will see later that the ground states are entangled with each
other. The Lagrangian governing the dynamics of the emitted particles is

£ =
1
2

∂µn̂a
p(ω)∂µn̂a

p(ω)− V(n̂a(ω)). (11)

The potential, V(n̂p), is defined as

V(n̂p) =
1
2

m2n̂2
p +

β

3
n̂3

p +
λ

4
n̂4

p. (12)

We could calculate the ground state by using the condition ∂V/∂n̂ = 0. However,
due to the spacetime curvature, some kinetic term will still remain, and it cannot be ig-
nored in Equation (11); thus, we have to consider the full version of the Euler–Lagrange
equations. The symmetry of the system under exchange of internal configurations,
consistent with black hole entropy (exchange of particles), is spontaneously broken
when m2 < 0. The signature of the parameter β tells us whether the particles evapo-
rating are bosons or fermions. The spectrum of radiation emerges from applying the
Euler–Lagrenge equations over the Lagrangian (11). The information paradox from
this perspective suggests that, while the trivial ground state before the formation of
the black hole can be represented with a pure quantum state, after the formation of
the black hole the vacuum is degenerate, with each vacuum state being represented by
each point at the bottom of the potential on Figure 1. Each possible ground state makes
a thermal emission of particles if the black hole selects them during the process. The
thermal emission then corresponds to a mixed quantum state, while the quantum state
corresponding to the internal configuration of the black hole is supposed to be a pure
quantum state. This is the source of the information paradox. In the coming section we
will look at how this important problem can be solved.
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Figure 1. The typical “Mexican hat” potential generated when we have degenerate vacuum states.
Each point at the bottom of the potential represents a vacuum state. When the black hole selects one
state, it breaks the symmetry spontaneously and then it emits radiation.

5. Mixed Quantum States and the Degenerate Vacuum
The fact that the evaporation process of a black hole corresponds to a spectrum

of radiation means that the emitted radiation is independent of the possible internal
configurations of the black hole. The degeneracy of the ground state is consistent with this
statement. However, more generally, this means that all the possible internal configurations
are entangled with each other. Initially, we would be tempted to express the superposition
of each possible internal configuration of a black hole with mass M, charge Q, and angular
momentum L as

|ψ >=
|0 >1 +|0 >2 +|0 >3 +... + |0 >N√

N
. (13)

Here |0 >i corresponds to each possible ground state of the black hole. The quantum
state (13) corresponds to a pure state, as can be proved if we construct the density matrix.
The only problem with this state is that it suggests that all the possible internal ground
states are not entangled. In order to represent the entanglement of the different internal
configurations, it is appropriate to express the system as a quantum state of the form

|ψ >=
∑N

i=1 Trj ̸=i|0 >1
⊗ |0 >2

⊗ |0 >3
⊗

...
⊗ |0 >N√

N
. (14)

This quantum state looks more like the state that Hawking imagined, considering that
the thermal radiation has to come from tracing out all the possible ground states, except the
one which the black hole selects when it breaks the symmetry of the system spontaneously.
Expressing the black hole ground state as in Equation (13) or (14) is a matter of convention,
and it will not affect the conclusions. We just have to keep in mind that the different ground
states are entangled. The pure quantum state represented by state (14) can be expressed
through the density matrix

ρ̂ =


1
N

1
N ... 1

N
1
N

1
N ... 1

N
... ... ... ...
... ... 1

N
1
N

. (15)

We can verify that Tr(ρ̂) = 1 (the trace runs over N entries of the matrix) and that the
density matrix is idempotent, which means that the ground state of a black hole, before
breaking the symmetry under exchange of particles, is a pure state. Spontaneously breaking
the symmetry under exchange of configurations is equivalent to tracing out all the ground
states in Equation (15), except the one which the black hole selects. Evidently, any selected
ground state, after tracing out all the additional ground states, is a mixed quantum state
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(non-pure). This is what gives a thermal character to the spectrum of radiation emitted by
the black hole. To solve the information paradox, we can argue that each possible ground
state corresponds to a mixed quantum state with a probability pk = 1/N, as it is formulated
in agreement with Equation (10). Here, N accounts the number of possible ground states,
while each ground state has an equal probability of appearing. The states are entangled
with each other. The selection of a specific ground state depends on external factors. Among
all the possible external perturbations, helping to select some specific direction for the
expansion of the universe, we have external gravitational sources, the expansion of the
universe itself, and others. Any perturbation generates a preferred direction of selection for
some specific ground state. Once this occurs, the emission process starts. In this way, we
can describe the evaporation process of a black hole as follows: (1). The black hole is formed
and characterized by its mass M, angular momentum L, and charge Q. (2). A degenerate
ground state emerges as a consequence of all the internal states consistent with the specific
values taken by M, L, and Q. (3). Each ground state has an equal probability pk = 1/N
of emerging as the final ground state. (4). Each ground state is not a pure quantum state,
but the total wave function of the system is a superposition of all possible ground states,
giving then a final pure (combined) ground state. (5). The selection of a single ground state
naturally gives a thermal spectrum corresponding to a mixed quantum state. If we trace
out all the ground states, except one, then the resulting density matrix is

ρ̂i = Tr(ρ̂)j ̸=i =


1
N 0 ... 0
0 1

N ... 0
... ... ... ...
... ... 0 1

N

. (16)

This density matrix naturally represents a mixed quantum state. It is easy to verify
that Tr(ρ̂i) = 1, ρ̂2

i ̸= ρi, and thus, Tr(ρ̂2
i ) < 1. At this point, it is clear that while the black

hole quantum state is a pure state as density matrix (15), the Quantum state still represents
the thermal spectrum, which is defined in Equation (16); it is a mixed quantum state which
does not have a wave function representation.

Recovering Unitarity

It is possible to recover the unitarity of the system if we make a superposition of all
the possible spectra of radiation emitted by the black hole. In other words, we can recover
the original ground state if we take the particle number operator n̂i as the order parameter,
as was suggested in [12]. Before the formation of the black hole, < 0̄|n̂p|0̄ >= 0, while
after the formation of the black hole we have < 0̄|n̂p|0̄ > ̸= 0. If we consider the black
hole evaporation process as a phase transition, then, evidently, the vacuum expectation
value of the particle number operator is the order parameter. Considering the vacuum
degeneracy, if we sum all the possible values of the order parameter, we should recover
the trivial result as explained in [16–20]. The recovery of the original vacuum state
from the superposition of all the possible order parameters is a standard result which
can be appreciated more from Figure 2. In the same figure, it can be perceived that for
every possible vacuum state, such that we can construct the vacuum expectation value of the
particle number operator as < 0|n̂i|0 >= ni, we have another possible vacuum state with
< 0|n̂j|0 >= nj = −ni. Negative particle numbers can be interpreted as the emission of
antiparticles. We can recover the vacuum state before the gravitational collapse if we add,
over all the possibilities, as follows:

< 0|n̂1|0 >1 + < 0|n̂2|0 >2 +...+ < 0|n̂N |0 >N= 0. (17)
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Another way to interpret this result is by saying that, depending on the external
perturbation breaking the symmetry of the black hole, the particle number can take positive
and negative values after evaluating the corresponding vacuum expectation values. This is
only possible if the black hole emits particles in some situations and antiparticles in others
during its particle emission process. We take the emission of antiparticles as a negative
number operator after evaluating the corresponding vacuum expectation value. In this
way, in general, the black holes can emit particles and antiparticles at any instant. This
solves the paradox, because Equation (17) tells us that

< 0̄|n̂1|0̄ >1 +...+ < 0̄|n̂N |0̄ >N=< 0|n̂b f |0 >= 0, (18)

where the subindex b f stands for “before formation” of the black hole. Then, it is pos-
sible to recover all the information for the black hole by summing all the possible out-
comes of the order parameter evaluated at their corresponding ground states, taking
the order parameter as the particle number operator. When the emitted field represents
a particle, then < 0̄|n̂i|0̄ >i > 0, and when the emitted field represents an antiparticle,
< 0̄|n̂i|0̄ >i < 0. This means that half of the degenerate ground states (N/2) correspond to
the emission of particles, while the other half (N/2) represent antiparticles. Once the black
hole selects one among the infinite ground states, then it starts to emit particles. The selec-
tion of a single ground state among many requires an external perturbation. The external
perturbation could be the presence of another source of gravity, universe expansion itself,
or the presence of other virtual pairs in the vicinity. Normally, the origin or source of the
perturbation is not so relevant, because its influence has to be considerably small once the
conditions for symmetry breaking are reached. Figure 3 illustrates this issue, where virtual
pairs are generated in the neighborhood of the black hole. For the emission process to occur,
there must be a special orientation for the pair with respect to the event horizon; in other
words, one particle from the pair can enter the event horizon when the right orientation,
with respect to the event horizon, is established. Particular orientations of the virtual pairs
at certain instants are defined by external perturbations.

Figure 2. Typical potential when there is a vacuum degeneracy. In such a case, the system selects
one among the N possible ground states. Before the symmetry is broken, for each possible vacuum
< 0|n̂i|0 >, we have a diametrically opposite vacuum obeying < 0|nN|0 >= − < 0|n̂i|0 >. This can be
interpreted as the emission of antiparticles when the appropriate vacuum state is selected during the
breaking process.
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Figure 3. Black Hole evaporation process. Virtual pairs with particles (blue circles) and antiparticles (red
circles) are generated in the neighborhood of the black hole. Their orientation with respect to the black
hole is random. From the perspective of the mechanism of spontaneous symmetry breaking, whether or
not one of the particles in the pair enters the event horizon depends on external perturbations.

6. Conclusions
In this paper, we have demonstrated that it is possible to solve the black hole informa-

tion paradox if we consider the process as a consequence of the breaking symmetry under
internal exchange of configurations spontaneously. From this perspective, the particle oper-
ator number n̂p is the order parameter of the system, which is trivial before the formation
of the black hole (zero vacuum expectation value) and non-trivial after the formation of the
black hole (non-zero vacuum expectation value) and once one of the degenerate vacuum
states is selected during the process. Even still, the whole quantum state representing the
black hole corresponds to a pure quantum state which considers all possible (degenerate)
vacuum states. Selecting one of the ground states is equivalent to tracing out all the other
vacuum states, and this is why Hawking radiation has a thermal nature, generating a
mixed quantum state (non-pure). The information for the black hole is recovered when
we sum all the possible order parameters emerging from the breaking of the symmetry,
under internal configurations, spontaneously. This brings another physical consequence,
suggesting that black holes not only emit particles, but also antiparticles. The present
formulation solves the information paradox of black holes. The emission of antiparticles
could be noticed through the electromagnetic spectrum that they would generate after
suffering annihilation when they meet ordinary particles. Analyzing how strong this sig-
nature can be is be a matter of evaluation, and discussion will follow in a forthcoming paper.
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