
                          

LETTER

The Tully-Fisher law and dark matter effects
derived via modified symmetries
To cite this article: Ivan Arraut 2023 EPL 144 29003

 

View the article online for updates and enhancements.

You may also like
Charmonium transverse momentum
distribution in high energy nuclear
collisions
Zebo Tang, Nu Xu, Kai Zhou et al.

-

A Consistent Set of Empirical Scaling
Relations for Spiral Galaxies: The (vmax,
MoM)–(0, MBH, ) Relations
Benjamin L. Davis, Alister W. Graham and
Françoise Combes

-

Physics at a future Neutrino Factory and
super-beam facility
A Bandyopadhyay, S Choubey, R Gandhi
et al.

-

This content was downloaded from IP address 113.52.87.148 on 08/11/2023 at 12:45

https://doi.org/10.1209/0295-5075/ad05f7
https://iopscience.iop.org/article/10.1088/0954-3899/41/12/124006
https://iopscience.iop.org/article/10.1088/0954-3899/41/12/124006
https://iopscience.iop.org/article/10.1088/0954-3899/41/12/124006
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.3847/1538-4357/ab1aa4
https://iopscience.iop.org/article/10.1088/0034-4885/72/10/106201
https://iopscience.iop.org/article/10.1088/0034-4885/72/10/106201


October 2023

EPL, 144 (2023) 29003 www.epljournal.org

doi: 10.1209/0295-5075/ad05f7

The Tully-Fisher law and dark matter effects derived
via modified symmetries

Ivan Arraut
(a)

Institute of Science and Environment and FBL, University of Saint Joseph
Estrada Marginal da Ilha Verde, 14-17, Macao, China

received 11 September 2023; accepted in final form 23 October 2023
published online 6 November 2023

Abstract – In any physical system, when we move from short to large scales, new spacetime
symmetries emerge which help us to simplify the dynamics of the system. In this letter we
demonstrate that certain variations on the symmetries of general relativity at large scales generate
the effects equivalent to dark matter ones. In particular, we reproduce the Tully-Fisher law,
consistent with the predictions proposed by MOND. Additionally, we demonstrate that the dark
matter effects derived in this way are consistent with the predictions suggested by MOND, without
modifying gravity.

editor’s  choice Copyright c© 2023 EPLA

Introduction. – General relativity (GR) marked, to-
gether with Quantum Mechanics, a scientific revolution
early at the twentieth century [1,2]. By the time of its
discovery, the theory solved some important puzzles [1].
Subsequently, important predictions of the theory were
proved experimentally [3]. GR was able to explain the pre-
cession of the orbit of Mercury, gravitational waves, the
dragging effect, the gravitational time-dilation effect, the
gravitational lenses, among many other cosmological and
astrophysical effects which have been tested experimen-
tally [3–7]. Yet still there are certain observations which
GR, in its standard form, has not been able to explain
by itself. Among these observations, we have the effects
normally attributed to dark matter and those attributed
to dark energy [8,9]. If general relativity is correct, then
the dark matter effects should come from some kind of
matter which is invisible for all the interactions, except
gravity [8]. However, alternative theories of gravity have
been formulated in order to explain the dark matter ef-
fects, but all of them present serious problems difficult
to solve [10–17]. Additionally, the theory of MOND, al-
though it is able to make important predictions about the
dynamics of the galaxies, being in this way an alternative
to dark matter [18–20], at present does not have a valid
(free of pathologies) relativistic version able to explain the
observed gravitational lenses [11–15]. In this paper, with-
out modifying gravity, we explain how the MONDian ef-
fects emerge naturally from the fact that the symmetry
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under rotations at galactic scales is not satisfied anymore
and instead a new (modified) symmetry emerges. The new
symmetry is equivalent to a modification of the Kepler
law [1], which changes from its version of equal areas in
equal times toward equal arcs in equal times. By impos-
ing the new symmetry, the Tully-Fisher law emerges nat-
urally [21]. Additionally, with the same argument we can
explain why the dark matter effects emerge when the ac-
celerations of the bodies involved are very small. This
is the same argument used by the theory of MOND in
order to explain the dark matter effects [18–20]. Addi-
tionally, we show that the low-acceleration condition has
to be complemented with a large angular momentum con-
dition, to be explained in this paper. Interestingly, the
proposed formalism does not modify the theory of GR
and it is completely based on symmetry arguments. Fi-
nally, we briefly explore the gravitational lenses, explain-
ing from this perspective why the observed enhancement
of the gravitational interaction occurs.

Standard general relativity: Einstein equations.
– The standard Einstein equations can be expressed as [3]

Rμν − 1

2
gμνR = 8πGTμν . (1)

Here Rμν is the Ricci tensor, R = gμνR
μν is the curvature

scalar. Additionally, G is the Newtonian constant and
Tμν is the energy-momentum tensor (source term). Equa-
tion (1) is able to explain the observed universe at solar
system scales, the existence of black holes, the existence
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of gravitational waves, among other observations [3–7].
Without any modification, eq. (1) can also explain the
galaxy rotation curves and the observed gravitational
lenses if we introduce dark matter as a source inside the
energy-momentum tensor Tμν [8]. This requires the as-
sumption of the existence of matter that cannot be seen
and which cannot feel any interaction, except the gravita-
tional interaction [8]. Equation (1) can be obtained from
the Einstein-Hilbert (EH) action expressed as follows:

S =
1

2κ

∫
d4x

√
−gR+ SM . (2)

Here SM is the matter action related to the source term
Tμν in eq. (1). In addition, κ = 8πG and g is the deter-
minant of the metric gμν [1].

Symmetries of the spherically symmetric metric. Here
we consider the standard spherically symmetric metric,
namely, the Schwarzschild metric defined as follows:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dt2 + r2dΩ2.

(3)
It is a trivial task to derive the geodesics based on this
metric. The geodesics are simplified after considering the
symmetries derived from the metric [1]. The symmetries
here emerge from the definitions of Killing vectors. The
Killing vectors define conserved quantities through the re-
lation [1]

Kμ
dxμ

dλ
= C, (4)

where C is a constant of motion,Kμ is the one-form emerg-
ing from the Killing vector Kν and dxμ

dλ is the standard
derivative of the spacetime coordinates with respect to the
affine parameter λ. For the spherically symmetric case, we
have four constants of motion; two of them are related to
the direction of the angular momentum, another conserved
quantity is related to the magnitude of the same angu-
lar momentum and, finally, there is a conserved quantity
which corresponds to the energy conservation. Once we
fix the plane of rotation of the bodies under analysis, then
we only have to worry about the magnitude of the angular
momentum and about the conserved quantity related to
the energy conservation. It is a trivial task to demonstrate
that the conserved energy is given by

E =

(
1− 2GM

r

)
dt

dλ
, (5)

and the conserved quantity related to the magnitude of
the angular momentum is

L = r2
dφ

dλ
. (6)

This equation can be interpreted as the Kepler law, which
suggests that when a test body rotates around the cen-
ter source in a system, then it covers equal areas in
equal times [1]. The equations of motion for this sys-
tem are obtained from the expansion gμνdx

μdxν = −1

(for massive particles), complemented with the conserved
quantities defined in eqs. (5) and (6). The final result is [1]

1

2

(
dr

dλ

)2

+ V (r) = Γ, (7)

with Γ = 1
2E

2− 1
2 . In eq. (7), the potential V (r) is defined

as

V (r) = −GM

r
+

L2

2r2
− GML2

r3
. (8)

The first term of this potential corresponds to the Newto-
nian contribution, the second corresponds to the dynami-
cal effects due to the centrifugal contribution and, finally,
the last term emerges exclusively from GR (it does not
appear in Newtonian gravity) and it is the term coupling
the source term GM with the angular momentum L. This
term is the one explaining the observed precession of per-
ihelion of Mercury. It is important to remark that the
potential in eq. (8) applies for massive test particles and
for massless particles the first term, namely, −GM

r is not
considered.

Modifications of the Kepler law at large scales.
– Although it is well known that our spacetime is four-
dimensional, when we go from short scales toward large
scales, the spacetime symmetries might change and these
changes modify the dynamic of the system. Then for
example, at galactic scales, the angular momentum is
not the conserved quantity to consider when we analyze
the geodesics. Instead, the conserved quantity replacing
eq. (6) is

L2

r
= γ2. (9)

This is a modification of the Kepler law at galactic scales.
The result (9) is equivalent to suggest that the conserved
quantity at galactic scales is not the angular momen-
tum but rather the velocity, which is what has been
perceived at galactic scales in agreement with the observa-
tions [8,18–20]. A way to visualize this aspect is to analyze
the Killing vector related to the symmetries under spatial
rotations (angular momentum conservation). Since the ve-
locity is the new conserved quantity, then the expression
(6) is replaced by the new conserved quantity

γ = r

(
dφ

dλ

)
. (10)

If we use the result (6) on the previous equation, we then
obtain eq. (9). Since the conservation of the angular mo-
mentum comes out from the expression defined in eq. (4),
after taking into account that the spatial Killing vector is
Kμ = (0, 0, 0, 1) [1], the one-form related to this vector
is obtained after downloading the index μ by using the
metric as follows:

Kμ = gμνK
ν = r, (11)

at galactic scales. Applying the expression (4), we then
get the conserved quantity (10). It is important to remark
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that the result (11), can be only obtained if the metric at
galactic scales suffers a modification on the angular part,
such that r2dΩ2 → rdΩ2. This is the necessary condition
for the velocity to become a conserved quantity (instead
of the angular momentum). If we expand the metric with
this modification, following the same steps as those giving
the results (7) and (8), then we find out that the dynamics
of the galaxy follows the following expression:

1

2

(
dr

dλ

)2

+ V1(r) = Γ, (12)

with the new potential V1(r), defined as

V1(r) = −GM

r
+

γ2

2r
− GMγ2

r2
. (13)

The zero-condition for the gradient of this equation gives
us the the equilibrium condition after using the result
∇V1(r) = 0. In this way, we obtain

− GM

r2
+

γ2

2r2
− 2GMγ2

r3
= 0. (14)

The solution for this equation is

req =
4GMγ2

γ2 − 2GM
. (15)

In a moment we will explain why the dark matter effects
emerge when γ2 → 2GM , which gives an apparent diver-
gence in eq. (15). For understanding more about this ap-
parent divergence and the related scales emerging from the
relation, we have to consider that γ2 = L2/r. Replacing
this condition over eq. (15) gives the following quadratic
equation:

r2eq −
L2

2GM
req + 2L2 = 0. (16)

Solving this equation gives us the solution

req =
L2

4GM

⎛
⎝1±

√
1− 32

(
GM

L

)2
⎞
⎠ . (17)

This solution gives us a minimal value for the angular
momentum of Lmin = 4

√
2GM with the corresponding

equilibrium radius of req = 8GM . However, this regime
is not the interesting one for the purposes of this analysis.
The things come out to be more interesting when we con-
sider the regime of large angular momentum defined by
the condition L � GM . In this case, we have two solu-
tions for req. The first one is req1 ≈ 4GM and the second
one is

req2 ≈ L2

2GM
. (18)

This means that L2/req ≈ 2GM , which is precisely the
condition γ2 → 2GM after considering the result (9).
Taking into account that L = rv (taking unitary value

for the mass of the test particle), we then get the general

form of the Tully-Fisher law, here given as

req2 =
2GM

v2
. (19)

The MOND regime appears when the acceleration v2

r →
a0, where a0 is some pre-determined scale. By using this
acceleration scale inside eq. (19), we get

req2 ≈
√

GM

a0
, (20)

which is the well-known scale at which the MONDian
regime operates. If we use this result in eq. (19), we get

v4 = 4GMa0. (21)

This is a more explicit form of the Tully-Fisher law in
the MONDian language [10,18–20]. It is interesting to no-
tice that the key term in these calculations is the term
coupling the angular momentum L with the source term
GM inside the potential (13). This term does not ap-
pear in Newtonian gravity [1]. We must remark that the

dark matter effects appear at low accelerations v2

r → a0,
but with the simultaneous condition of large angular mo-
mentum (L � GM), which brings out the solution (18).
Finally, we would like to remark here the gravitational en-
hancement obtained at the MONDian regime. The terms
generating gravitational attraction in eq. (13) can be com-
bined as

V1Att(r) = −GM

r

(
1 +

γ2

r

)
= −GMeff

r
, (22)

after considering the acceleration limit a0. In this previ-
ous equation, the subindex Attmeans “Attractive” and we

have also defined Meff = 1+ γ2

r , which can be interpreted
as an effective mass at the moment of calculating gravita-
tional lenses. This effective mass is enhanced by the term
coupling the angular momentum with the source term in
eq. (13) and this could explain the observed enhancements
via gravitational lenses. Then it is evident that the deflec-
tion angle of the light crossing a galaxy will be enhanced
by the third term of the potential in eq. (13).

Conclusions. – In this paper we have demonstrated
that the dark matter effects emerge naturally from the
standard theory of GR, but considering a modification of
the conserved quantity associated to spatial rotations at
large scales. Interestingly, not only the Tully-Fisher law
and the MONDian effects emerge naturally but also the
gravitational enhancements, necessary for reproducing ad-
ditional deflection angles when we consider gravitational
lenses, appear naturally from the same formulation. We
have also proved that the term coupling the angular mo-
mentum with the source term is the main responsible for
the emergence of the dark matter effects, after consider-
ing the modified symmetry under spatial rotations. The
modification of this symmetry suggests that the Kepler
law does not follow the standard format at galactic scales.
Then the test bodies, instead of sweeping equal areas in
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equal times, sweep equal arcs in equal times at galactic
scales. This modification is enough for reproducing the
known dark matter effects without modifying gravity. Fi-
nally, it is important to remark that we have demonstrated
that, for getting the dark matter effects, not only low ac-
celerations are necessary, but also large magnitudes of the
angular momentum for the bodies moving around the cen-
ter of the galaxy. These deep details are not fully ex-
plained inside the standard MONDian formulation, which
is fully based on the acceleration regime and an unknown
interpolating function. The interpolating function in such
a case, turns out to make corrections to the Newtonian
gravity at galactic scales due to the low accelerations of
the objects at those scales [18–20].

Data availability statement : No new data were created
oror analysed in this study.
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