Your search
Results 91 resources
-
This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k-Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1-score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.
-
Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms. Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19 Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification scenarios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All vs. All). Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of F1–Score; (2) Low vs. Severe - Accuracy of 91.67% and an F1–Score of 94.92%; (3) Moderate vs. Severe - Accuracy of 94.12% and an F1–Score of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of F1–Score. Conclusion: The results indicate that the applied methodology could be considered a good tool for distinguishing COVID-19’s different severity stages using ECG signals. Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination. In comparison to previous studies using the same database, this study shows a 7.57% improvement in diagnostic accuracy for the All vs All comparison.
-
The extent of citizens' trust in government determines the success or failure of e-government initiatives. Nevertheless, the idiosyncrasies of the concept and the broad spectrum of its approach still present relevant challenges. This work presents a systematic literature review on e-government trust while elaborating and summarizing a conceptual analysis of trust, introducing evaluation methods for government trust, and compiling relevant research on e-government trust and intentional behavior. A total of 26 key factors that constitute trust have been identified and classified into six categories: Government trust, Trust in Internet and technology (TiIT), Trust in e-government (TiEG), Personal Beliefs, Trustworthiness, and Trust of intermediary (ToI). The value added of this work consists of developing a conceptual framework of TiEG to provide a significant reference for future in-depth studies and research on e-government trust.
-
Small and medium-sized enterprises (SMEs) can benefit significantly from open innovation by gaining access to a broader range of resources and expertise using absorptive capacitive, and increasing their visibility and reputation. Nevertheless, multiple barriers impact their capacity to absorb new technologies or adapt to develop them. This paper aims to perform an analysis of relevant topics and trends in Open Innovation (OI) and Absorptive Capacity (AC) in SMEs based on a bibliometric review identifying relevant authors and countries, and highlighting significant research themes and trends. The defined string query is submitted to the Web of Science database, and the bibliometric analysis using VOSviewer software. The results indicate that the number of scientific publications has consistently increased during the past decade, indicating a growing interest of the scientific community, reflecting the industry interest and possibly adoption of OI, considering Absorptive. This bibliometric analysis can provide insights on the most relevant regions the research areas are under intensive development.
-
Stock price prediction has always been challenging due to its volatility and unpredictability. This paper performs a preliminary exploratory comparison that utilizes Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) algorithms to forecast the stock market in Hong Kong. It considers a public dataset publicly available and uses feature engineering to extract relevant features. Then, LSTM and SVM algorithms are applied to predict stock prices. Our results show that the proposed machine learning techniques can predict stock prices in Hong Kong's share market with the error metrics presented, and, for this purpose, LSTM achieved better results than SVM, with MSE = 0.0026, RMSE = 0.0508, MAE = 0.0406, and MAPE = 1.325.
-
The classification of emotions based on facial expressions have been a new topic of research in recent years, especially in marketing and consumer behavior areas. However, there is lack of studies to understand how the research topic is developed in terms of bibliometric data. Therefore, the purpose of this work is to provide a bibliometric analysis of the research on the analysis of facial expressions for marketing and consumer behavior, identifying the state of the art, the latest research direction, and other indicators. We extracted data from Web of Science (WOS) platform, considering its core database, resulting in a total of 117 articles. The software Vosviewer was used to analyze the data and graphically visualize the results. This study indicates some of the most influential authors citations and coupling analysis in this specific field, identifies journals with the most published articles, and provide trends of the research area based on the analysis of keywords and corresponding number of articles per year. The results shows that 11 articles (9.4%) were cited more than 100 times, and the two most prolific authors published 5 articles, and the two most influential authors are Bouaziz Sofien and Pauly mark(270 citations) in this field. Of the 117 articles retrieved by WOS, more than 70% were published in high impact journals. The bibliometric analysis of the existing work in this study provides a valuable and reliable reference for researchers in this field and makes a reasonable prediction of the research direction trends.
-
This research aims to evaluate a Macau tea brand's social media advertising effectiveness with neuromarketing tools, including physiological monitoring that can measure emotional arousal. This research bridges the gap of social media marketing on Instagram for brands through the neuromarketing method. Data from 40 respondents were collected with iMotions software using neuroscientific tools. This research uses the stimuli of Guanding Teahouse, a newly established Macau tea brand, to evaluate social media advertising effectiveness. The neuroscientific tools – Galvanic Skin Response (GSR) sensors, Eye-tracking, Facial Expression Analysis (FEA) and emotion analysis are used to do the experiment. The data analysis was drawn from one representative respondent to measure the emotions and attention on the Instagram advertisements. Video 1 recorded 9 GSR peaks and Video 2 recorded 12 GSR peaks, both videos attention is ranging between 96-98 indexes. Results show that advertising videos should focus more on the products than the model. Moreover, the participant is more interested in Video 2, but the effectiveness of advertising is showing a lower focus on the brand and the tea. Future studies should consider comparing the video advertising effectiveness of Instagram stories and Instagram reels to prevent disruption of video on the stories ad.
-
Over the past several decades, the dichotomy between traditional and emerging donors has been based upon the notion that emerging donors (such as China) support authoritarian regimes and use foreign aid to pursue their economic interests at the expense of the poor in the recipient countries. Accordingly, Western donors, media, and scholars portray Chinese aid as non-poverty-focused. This study aims to review and analyze whether the dichotomy between traditional and emerging donors is still relevant in the current aid system and to propose a new and rigorous criterion for recategorizing donors. In terms of methodology, this study relies on secondary data, including scholarly works on traditional and emerging donors and foreign aid policy documents. Conclusions based on the research indicate that the divide between traditional donors and (re)emerging donors is becoming more ambiguous. The literature review indicates that the two donors’ aids had a mixed impact and that their approaches were similar. This paper highlights the importance of developing different recategorization criteria depending on the impact of aid.
-
Human emotions can be associated with decision-making, and emotions can generate behaviors. Due to the fact that it could be biased and exhaustively complex to examine how human beings make choices, it is necessary to consider relevant groups of study, such as stock traders and non-traders in finance. This work aims to analyze the connection between emotions and the decision-making process of investors and non-investors submitted to the same set of stimuli to understand how emotional arousal might dictate the decision process. Neuroscience monitoring tools such as Real-Time Facial Expression Analysis (AFFDEX), Eye-Tracking, and Galvanic Skin Response (GSR) were adopted to monitor the related experiments of this paper and its accompanying analysis process. Thirty-seven participants attended the study, 24 were classified as stock traders, and 13 were non-traders; the mean age for the groups was 35 and 25, respectively. The designed experiment initially disclosed a thought-provoking result between the two groups under the certainty and risk-seeking prospect theory; there were more risk-takers among non-investors at 75%, while investors were inclined toward certainty at 79.17%. The implication could be that the non-investing individuals were less complex in thought and therefore pursued higher returns besides a high probability of losing the game. In addition, the automatic emotion classification system indicates that when non-investors confronted a stock trending chart beyond their acquaintance or knowledge, they were psychologically exposed to fear, anger, sadness, and surprise. On the contrary, investors were detected with disgust, joy, contempt, engagement, sadness, and surprise, where sadness and surprise overlapped in both parties. Under time pressure conditions, 54.05% of investors or non-investors tend to make decisions after the peak(s) of emotional arousal. Variations were found in the deciding points of the slopes: 2.70% were decided right after the peak(s), 37.84% waited until the emotions turned stable, and 13.51% were determined as the emotional indicators started to slide downwards. Several combinations of emotional responses were associated with decisions. For example, negative emotions could induce passive decision-making, in this case, to sell the stock; nevertheless, it was also examined that as the slope slipped downwards to a particular horizontal point, the individuals became more optimistic and selected the "BUY" option. Future works may consider expanding the study to larger sample size, different demographic groups, and other biometrics for further analysis and conclusions.
-
Corporate leaders are constantly dealing with stress in parallel with continuous decision-making processes. The impact of acute stress on decision-making activities is a relevant area of study to evaluate the impact of the decisions made, and create tools and mechanisms to cope with the inevitable exposure to stress and better manage its impact. The intersection of leadership and neurosciences techniques is called Neuroleadership. In this work, an experiment is proposed to detect and measure the emotional arousal of two groups of business professionals, divided into two groups. The first one is the intervention/stress group, n=30, exposed to stressful conditions, and the control group, n=14, not exposed to stress. The participants are submitted to a sequence of computerized stimuli, such as watching videos, answering survey questions, and making decisions in a realistic office environment. The Galvanic Skin Response (GSR) biosensor monitors emotional arousal in real-time. The experiment design implemented stressors such as visual effects, defacement, unfairness, and time-constraint for the intervention group, followed by decision-making tasks. The results indicate that emotional arousal was statistically significantly higher for the intervention/stress group, considering Shapiro and Mann-Whitney tests. The work indicates that GSR is a reliable stress detector and may be useful to predict negative impacts on executive professionals during decision-making activities.
-
The invention of neuroscience has benefited medical practitioners and businesses in improving their management and leadership. Neuromarketing, a field that combines neuroscience and marketing, helps businesses understand consumer behaviour and how they respond to advertising stimuli. This study aims to investigate the consumer purchase intention and preferences to improve the marketing management of the brand, based on neuroscientific tools such as emotional arousal using Galvanic Skin Response (GSR) sensors, eye-tracking, and emotion analysis through facial expressions classification. The stimuli for the experiment are two advertisement videos from the Macau tea brand “Guanding Teahouse” followed by a survey. The experiment was conducted on 40 participants. 76.2% of participants that chose the same product in the first survey responded with the same choice of products in the second survey. The GSR peaks in video ad 1 measured a total of 60. On the other hand, video ad 2 counted a total of 55 GSR peaks. The emotions in ad1 and ad2 have similar responses, with an attention percentage of 76%. The results showed that ad1 has a higher engagement time of 11.1% and ad2 has 9.6%, but only 19 of the respondent’s conducted engagement in video ad1, and 31 showed engagement in video ad2. The results demonstrated that although ad 1 has higher engagement rates, the respondents are more attracted to video ad 2. Therefore, ad2 has better marketing power than ad 1. Overall, this study bridges the gap of no previous research on measuring tea brand advertisements with the neuroscientific method. The results provide valuable insights for marketers to develop better advertisements and marketing campaigns and understand consumer preferences by personalising and targeting advertisements based on consumers' emotional responses and behaviour of consumers' purchase intentions. Future research could explore advertisements targeting different demographics.
-
In recent years, the integration of Machine Learning (ML) techniques in the field of healthcare and public health has emerged as a powerful tool for improving decision-making processes [...]
-
Consumers' selections and decision-making processes are some of the most exciting and challenging topics in neuromarketing, sales, and branding. From a global perspective, multicultural influences and societal conditions are crucial to consider. Neuroscience applications in international marketing and consumer behavior is an emergent and multidisciplinary field aiming to understand consumers' thoughts, reactions, and selection processes in branding and sales. This study focuses on real-time monitoring of different physiological signals using eye-tracking, facial expressions recognition, and Galvanic Skin Response (GSR) acquisition methods to analyze consumers' responses, detect emotional arousal, measure attention or relaxation levels, analyze perception, consciousness, memory, learning, motivation, preference, and decision-making. This research aimed to monitor human subjects' reactions to these signals during an experiment designed in three phases consisting of different branding advertisements. The nonadvertisement exposition was also monitored while gathering survey responses at the end of each phase. A feature extraction module with a data analytics module was implemented to calculate statistical metrics and decision-making supporting tools based on Principal Component Analysis (PCA) and Feature Importance (FI) determination based on the Random Forest technique. The results indicate that when compared to image ads, video ads are more effective in attracting consumers' attention and creating more emotional arousal.
-
The adoption of project management techniques is a crucial decision for corporate governance in construction companies since the management of areas such as risk, cost, and communications is essential for the success or failure of an endeavor. Nevertheless, different frameworks based on traditional or agile methodologies are available with several approaches, which may create several ways to manage projects. The primary purpose of this work is to investigate the adequate project management methodology for the construction industry from a general perspective and consider a case study from Macau. The methodology considered semi-structured interviews and a survey comparing international and local project managers from the construction industry. The interviews indicate that most construction project managers still follow empirical methods with no specific methodology but consider the adoption of traditional waterfall approaches. In contrast, according to the survey, most project managers and construction managers agree that the project's efficacy needs to increase, namely in planning, waste minimization, communication increase, and focus on the Client's feedback. In addition, there seems to be a clear indication that agile methodology could be implemented in several types of projects, including hospitality development projects. A hybrid development approach based on the Waterfall and Agile methodologies as a tool for the project management area may provide a more suitable methodology for project managers to follow.
-
Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.
-
There are many systematic reviews on predicting stock. However, each of them reveals a different portion of the hybrid AI analysis and stock prediction puzzle. The principal objective of this research was to systematically review and conclude the systematic reviews on AI and stock to provide particularly useful predictions for making future strategies for stock markets. Keywords that would fall under the broad headings of AI and stock prediction were looked up in two databases, Scopus and Web of Science. We screened 69 titles and read 43 systematic reviews which include more than 379 studies before retaining 10 of them.
-
The use of computational tools for medical image processing are promising tools to effectively detect COVID-19 as an alternative to expensive and time-consuming RT-PCR tests. For this specific task, CXR (Chest X-Ray) and CCT (Chest CT Scans) are the most common examinations to support diagnosis through radiology analysis. With these images, it is possible to support diagnosis and determine the disease’s severity stage. Computerized COVID-19 quantification and evaluation require an efficient segmentation process. Essential tasks for automatic segmentation tools are precisely identifying the lungs, lobes, bronchopulmonary segments, and infected regions or lesions. Segmented areas can provide handcrafted or self-learned diagnostic criteria for various applications. This Chapter presents different techniques applied for Chest CT Scans segmentation, considering the state of the art of UNet networks to segment COVID-19 CT scans and a segmentation experiment for network evaluation. Along 200 epochs, a dice coefficient of 0.83 was obtained.
Explore
Academic Units
-
Faculty of Business and Law
- Alexandre Lobo
- Douty Diakite (2)
- Emil Marques (1)
- Ivan Arraut (3)
- Jenny Phillips (2)
- Sergio Gomes (2)
- Silva, Susana C. (1)
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
Resource type
- Book (3)
- Book Section (31)
- Conference Paper (15)
- Journal Article (34)
- Preprint (2)
- Presentation (6)