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A B S T R A C T

Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early
diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms.
Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For
each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected
signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst
Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension
and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19
Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification sce-
narios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All
vs. All).
Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of
𝐹1–𝑆𝑐𝑜𝑟𝑒; (2) Low vs. Severe - Accuracy of 91.67% and an 𝐹1–𝑆𝑐𝑜𝑟𝑒 of 94.92%; (3) Moderate vs. Severe
- Accuracy of 94.12% and an 𝐹1–𝑆𝑐𝑜𝑟𝑒 of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of
𝐹1–𝑆𝑐𝑜𝑟𝑒.
Conclusion: The results indicate that the applied methodology could be considered a good tool for distin-
guishing COVID-19’s different severity stages using ECG signals.
Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination.
In comparison to previous studies using the same database, this study shows a 7.57% improvement in
diagnostic accuracy for the All vs All comparison.
1. Introduction

The outbreak of the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) in 2019 caused a pandemic, resulting in a significant
increase in the number of confirmed cases and deaths worldwide.
Effective and efficient diagnosis of COVID-19 is crucial to control its
spread and minimize its impact on public health [1–3].

∗ Correspondence to: Universidade Católica Portuguesa, CBQF–Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Office EBI112, Rua
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There are several ways to detect COVID-19. The most widely used
method is the RT-PCR (Reverse Transcription Polymerase Chain Re-
action) test, which is time-consuming, requires specialized laboratory
equipment, and has sensitivity and specificity limitations. Another test
is the Rapid Antigen Test, which detects specific proteins on the virus
surface and provides quick results but is less accurate than the RT-PCR
test. Antibody tests check for the presence of antibodies in the blood,
which are produced by the body in response to an infection and are
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Table 1
State-of-the-art literature report on COVID-19 severity activity discrimination area with information about the source,
comparison groups, used classifiers, and classification metrics.

Ref Year Source Comparison group Classifier Accuracy 𝐹1 − 𝑆𝑐𝑜𝑟𝑒

[19] 2021 X-ray High vs Moderate vs Mild
Severity

XGBoost 97.00% 96.00%

[20] 2020 X-ray Severe vs Non-severe DenseNet-201 95.34% –

[21] 2021 X-ray Mild vs Moderate vs Severe
vs Critical

CNN 95.52% 97.00%

[22] 2020 X-ray Severe vs Non-severe SVM 81.48% –

[14] 2020 Laboratory
parameters

Survival vs Non-survival SVM 91.25% 94.74%

[23] 2023 ECG (previous study
from same authors)

All vs All LinearSVC 71.00% 76.00%
used to determine if a person has been previously infected [4]. Chest
X-ray or CT Scans can help to identify lung damage caused by COVID-
19 [4]. It is important to note that no single test is 100% accurate
and to address these limitations, there has been a growing interest in
developing alternative diagnostic methods based on image and signal
processing [5].

Due to the nature of the virus, COVID-19 will present a higher
impact on the respiratory system. However, The efferent activities of
the Autonomic nervous system (ANS) directed to the sinus node are
synchronized with each cardiac cycle, being modulated both by the
respiratory center and by the respiratory movement [6]. Thus, the
influence of the ANS on the heart is dependent on changes in the res-
piratory system, specifically when considering the high frequency (HF)
component, with a variation of 0.15 to 0.4 Hz, indicating the action
of the vagus nerve on the heart [7]. This close bond between the two
systems can cause a variety of cardiac complications, with some studies
showing the appearance of myocardial injury, heart failure, cardiogenic
shock, and cardiac arrhythmias [8,9].

These complications are worrisome because they can take the pa-
tient’s life. The use of ECG signals to detect COVID-19 came with some
interesting findings. Several studies have found an increase in abnormal
ECG recordings. The most common findings on the signal were ST-
elevation/depression with in some cases the exam presenting a T-wave
inversion [10].

To detect these changes in the signal, some studies took advan-
tage of pre-trained Machine Learning Classifiers and applied Transfer
Learning to those classifiers. Feature extraction and classification are
applied by signal processing algorithms and classifiers. In some cases,
this process has been done by using Convolution Neural Networks, a
Deep Learning algorithm that is normally used in the classification of
images [11–13].

The detection of COVID-19 is an important step in controlling the
disease but prognosis prediction can counteract the terrible complica-
tions [14,15].

The use of a signal such as the ECG presents a good opportunity
to predict the prognosis of COVID-19 because multiple studies showed
that the visualization of an abnormal 𝑇 wave or the presence of S-T
segment elevation/depression could be a good prognostic indicator in
predicting the mortality of COVID-19 patients [16–18].

Table 1 presents the current state-of-the-art COVID-19 severity ac-
tivity discrimination methods results.

The main contributions and goals of the present work are twofold:
(1) Propose new nonlinear features to characterize COVID-19 clin-
ical severity stages; (2) Evaluate the performance of a set of Ma-
chine Learning classifiers with the proposed features as inputs for
discrimination.

2. Methodology

This proposed methodology, illustrated in Fig. 1, is divided into 4
parts:
2

• Data Collection and Processing
• Feature Extraction
• Data Compressor
• Machine Learning Classification

2.1. Experimental setup

This work was done using 2 different coding languages: MATLAB
and Python. MATLAB, version R2022a, was used to remove the ECG
signal artifacts, extract the ECG non-linear features, and compress and
organize data for classification. Python (version 3.9.12) was used for
designing, performing, and getting discrimination reports from a set of
Machine Learning models.

All work has been performed with a Macbook Pro 14 with an M1
Pro (8-Core CPU and 14-Core GPU) and 16 GB of RAM.

2.2. Data collection and processing

The database is a cross-sectional descriptive study of quantitative
nature carried out at Hospital Universitário Walter Cantídio (HUWC)
and Hospital Estadual Leonardo da Vinci (HELV), Ceará, Brazil, from
May 2021 to January 2022, corresponding to the second and third wave
of COVID-19 in Brazil.

The Ethics Committee approved the study for Research on Hu-
mans (CAAE - HELV: 47229221.9.3001.5684; CAAE - HUWC: 472292
21.9.0000.5045).

The database has 8 patients with low severity, 10 with moderate
severity, and 33 with a severe stage of the disease. The youngest patient
was 18 years old, and the oldest patient was 88 years old, with an
average age of 54.59 and a standard deviation of 17.23.

The severity classification of COVID-19 was established according to
the following criteria: Low (signal portion example in Fig. 2(a)) - mild
clinical symptoms and no signs of pneumonia on imaging examination,
Moderate (Fig. 2(b)) - the presence of fever and respiratory symptoms
with radiological evidence of pneumonia, Severe (Fig. 2(c)) - cases
meeting any of the following criteria: (1) respiratory distress (> 30
breaths/min); (2) oxygen saturation <93% at rest; (3) arterial partial
pressure of oxygen (PaO2)/ fraction of inspired oxygen (FiO2)<300
mmHg and cases with chest imaging that showed evident lesion pro-
gression of >50% within 24-48 h, critical — cases that met any of
the following criteria: (1) respiratory failure and requiring mechanical
ventilation, (2) shock, (3) other organ failure requiring ICU care [24].

The ECG recordings were performed with the participants being
placed in two different body positions, the supine (Down) position
and the orthostasis (Up) position. After a 5-min period of resting in
the supine position and stabilization of the signal [25], recording of
heartbeats was started. During a 5-minute interval, the volunteers were
instructed to remain in the supine position, motionless and silent.
After this period, the subjects were submitted to the active postural

manoeuvre (APM) and asked to stand up suddenly, in the shortest time
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Fig. 1. Methodology phases and workflow diagram.
Fig. 2. ECG signal portion example for each class: (a) Low, (b) Moderate and (c) Severe.
possible, seeking the orthostatic position and remain there, without
moving, for a 5-minute interval [26]. Soon after, they were instructed
to return to the supine position, and then the electrocardiographic
recording was completed and the electrodes were removed. Heartbeat
recordings were made continuously during the entire maneuver. During
the analysis of the records, the data obtained at the time of postural
changes were excluded because of signal instability.

The frequency sample was 256 Hz, and the participants were mon-
itored, in spontaneous breathing, in the modified Lead II.

Table 2 shows the Continuous Measure and Categorical Measure of
the data present in the previously mentioned database.
3

2.3. Artifacts removal

The raw ECG signals data were analyzed by a Medical Doctor to
identify artifacts. Subsequently, one of two actions was performed for
each signal: (1) complete signal deletion if a significant portion of the
signal was affected by artifacts or (2) removal of specific signal seg-
ments affected by artifacts, while retaining the portions with acceptable
quality, as illustrated in Fig. 3.

In the beginning, the database had signals from 51 patients. After
the artifacts removal stage, the number of available signals in the
database for the following tasks was reduced to 42 patients (8 patients
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Table 2
Socio-demographic and clinical characteristics of the database.

Continuous measure Min Max AVG SD

Age 18 88 54.59 17.23

Categorical measure %

Gender
Male 60
Female 40

Clinical information
Low 16
Moderate 18
Severe 66
Fig. 3. Example of artifacts removal: (a) Before artifact removal, (b) After artifact removal.
with low severity, 6 patients with moderate severity, and 28 patients
with a severe stage of the disease).

2.4. ECG non-linear analysis and feature extraction

The heart is a nonlinear system, and its electrical activity is reflected
in the ECG signal [27]. This means that linear analysis methods may
not be able to accurately capture the dynamics of the ECG signal. To
address this, we opted to analyze the ECG in a nonlinear way, which is
a more complex approach that takes into account the nonlinear nature
of the heart.

In each patient ECG recording, 10 non-linear features were ex-
tracted from every 1 s-long segment within 6 ways of different win-
dowing signal analysis crops: Rectangular non-overlapping window-
ing (𝑅𝑒𝑐), Rectangular 0.5s overlapping windowing (𝑅𝑒𝑐𝑂), Hamming
non-overlapping windowing (𝐻𝑚), Hamming 0.5s overlapping win-
dowing (𝐻𝑚𝑂), Hanning non-overlapping windowing (𝐻𝑛) and Han-
ning 0.5s overlapping windowing (𝐻𝑛𝑂). The ten extracted features
were:

• Energy (𝐸𝑛) of discrete signal 𝑥(𝑛) is defined as:

𝐸𝑛 =
𝑁−1
∑

𝑛=0
∣ 𝑥(𝑛) ∣2 (1)

The 𝐸𝑛, which represents the system’s capacity to perform work,
is derived by the sum of each squared signal component [28].

• Entropy is a metric that evaluates the energy content of a com-
plex system, it can also be employed to quantify the masked in-
formation within a signal, characterizing the irregular and unpre-
dictable nature of the pathological signals [28]. For this research,
three different entropies are considered: Approximate (𝐸𝐴), Log-
arithmic (𝐸𝐿𝑜𝑔), and Shannon (𝐸𝑆ℎ𝑎). The three types of en-
tropies can be defined as follows:

𝐸𝐴(𝑚, 𝑟) = lim 𝛩𝑚(𝑟) − 𝛩𝑚+1(𝑟), (2)
4

𝑁→∞
𝐸𝐿𝑜𝑔 =
𝑁
∑

𝑛=1
log[∣ 𝑥(𝑛) ∣2] (3)

and

𝐸𝑆ℎ𝑎 = −
𝑁
∑

𝑛=1
∣ 𝑥(𝑛) ∣2 log[∣ 𝑥(𝑛) ∣2] (4)

where 𝑁 is the vector length, 𝑟 denotes a tolerance value, 𝛩 is
the Heaviside step function and 𝑚 is the dimension [29].

• Hurst Exponent (𝐸𝐻) is used to quantify how chaotic or unpre-
dictable a time series is [30]. The equation can be defined as:

𝐾𝑞(𝜏) ∼ ( 𝜏
𝜈
)𝑞𝐸𝐻(𝑞), (5)

with

𝐾𝑞(𝜏) =
((∣ 𝑋(𝑡 + 𝜏) −𝑋(𝑡)) ∣𝑞)

(∣ 𝑋(𝑡) ∣𝑞)
, (6)

where 𝑞 is the order moments of the distribution increments, 𝜈 is
the time resolution and 𝑡 is the period of a given time series signal
𝑋(𝑡) [30].

• Lyapunov Exponent (𝐸𝐿𝑦𝑎) is a metric to evaluate the system
predictability and sensitivity for changing [31].

𝐸𝐿𝑎𝑦(𝑥0) = lim
𝑛→∞

∑𝑛
𝑘=1 ln ∣ 𝑓 ′(𝑥𝑘 − 1) ∣

𝑛
, (7)

where 𝑓 ′ is the integrator function 𝑓 derivative [32].
• Higuchi Fractal Dimension (𝐻) estimates the fractal dimension

of a time series signal. The equation can be illustrated as:

𝐻 =
ln(𝐿(𝑘))
ln( 1𝑘 )

, (8)

where 𝑘 is a number of composed sub-series and 𝐿(𝑘) is the
averaged curve length.
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• Katz Fractal Dimension (𝐾) estimates the fractal dimensions
through a waveform analysis of a time series [30]. The equation
is defined as:

𝐾 =
log(𝑛)

log(𝑛) + log(𝑚𝑎𝑥𝑛(
√

(𝑛−1)2+(𝑋(𝑛)−𝑋(1))2)
∑𝑁

𝑛=2
√

1+(𝑋(𝑛−1)−𝑋(𝑛))2
)
, (9)

where 𝑋(𝑛) is the signal.
• Correlation Dimension (𝐶𝐷) is used to measure self-similarity.

A higher value of 𝐶𝐷 means an elevated degree of complexity
and less-similarity [29].

𝐶𝐷 = lim
𝑀→∞

2
∑𝑀−𝑘

𝑖=1
∑𝑀

𝑗=𝑖+𝑘 𝛩(𝑙 ∣ 𝑋𝑖 −𝑋𝑗 ∣)

𝑀2
, (10)

where 𝛩(𝑥) is the Heaviside step function, the 𝑋𝑖 and 𝑋𝑗 are the
position vectors on attractor, 𝑙 is the distance under consideration,
𝑘 is the summation offset and 𝑀 is the reconstructed vectors
numbers from the original signal [29].

• Detrended Fluctuation Analysis (𝐷𝐹𝐴), used to address non-
stationary time-series, is a technique for measuring the power
scaling observed through R/S analysis [33]. The 𝐷𝐹𝐴 can be
calculated as

𝐷𝐹𝐴(𝑛) =

√

∑𝑁
𝑘=1[𝑦(𝑘) − 𝑦𝑛(𝑘)]2

𝑁
, (11)

where 𝑛 is the length, 𝑦𝑛(𝑘) is the local trend and 𝑦(𝑘) is define as

𝑦(𝑘) =
𝑘
∑

𝑖=1
[𝑥(𝑖) − 𝑥], (12)

with 𝑥(𝑖) as the inter-beat interval and 𝑥 as its average [34].

.5. Data compressor

Taking into consideration the 10 extracted features of all segments
s time series distributions per different windowing analyses, 6 distinct
tatistical functions acted like data compressors over time. This process
educes the dimensionality problem and ensures that the number of
etrics per subject is equal. The six statistical functions were:

• Average (𝐴𝑣𝑔) is calculated by the sum of values in the vector
and then divided by the length of the vector [35]. The equation
is defined as

𝐴𝑣𝑔 =
∑𝑁

𝑛=1 𝑥(𝑛)
𝑁

, (13)

where 𝑁 is the length of the vector, and 𝑥 is the vector.
• Standard Deviation (𝑆𝑡𝑑) is a measure of how dispersed the data

is relative to the mean [35] and can be defined as

𝑆𝑡𝑑 =

√

∑𝑁
𝑛=1 ∣ 𝑥(𝑛) − 𝐴𝑣𝑔 ∣2

𝑁 − 1
(14)

• 95th Percentile (𝑃 95) is the number that is equal or grater than
95% of the values present in a vector [36]. 𝑃 95 is obtained by
ordering the values in increasing order and using the formula

𝑛𝑃95 = 0.95 ×𝑁, (15)

where 𝑛𝑃95 is the 𝑃95 position in a vector and 𝑁 is the number
of samples.

• Variance (𝑉 𝑎𝑟) is the spread of numbers in a vector [36] and is
defined as

𝑉 𝑎𝑟 =
∑𝑁

𝑛=1 ∣ 𝑥(𝑛) − 𝐴𝑣𝑔 ∣2
(16)
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𝑁 − 1
• Median (𝑀𝑒𝑑) is the value separating the highest values in half
from the lowest values. 𝑀𝑒𝑑 is obtained by arranging the values
in ascending order and using the equation

𝑛𝑀𝑒𝑑 = 0.5 ×𝑁, (17)

where 𝑛𝑀𝑒𝑑 is the 𝑀𝑒𝑑 position in a array and 𝑁 is the number
of samples [36].

• Kurtosis (𝐾𝑢𝑟) measures how a distribution differs from a normal
distribution. The equation is defined as

𝐾𝑢𝑟 =
∑𝑁

𝑛=1 ∣ 𝑥(𝑛) − 𝐴𝑣𝑔 ∣4

𝑆𝑡𝑑4
(18)

2.6. Data driven analysis by classifiers

2.6.1. Feature individual power analysis per binary groups
The assessment of each feature distribution individual power for

discriminate between each pair of study groups (Low vs. Moderate,
Low vs. Severe, Moderate vs. Severe) was performed by X-ROC classi-
fier [37], a binary classifier. A total of 720 features (time series of
10 non-linear features compressed by (×) 6 statistics × 6 types of
windowing analysis × 2 modalities per participant) have been individ-
ually assessed for each pair of study groups to quantify their ability
to discriminate between them. It should be noted that each feature
vector per study group suffered a normalization by 𝑧 − 𝑠𝑐𝑜𝑟𝑒 [35]
before classifying. Finally, X-ROC classifier leverages the squared dis-
tance between distribution means to identify an optimal threshold for
classification. Moreover, the classification results were evaluated by
using the receiver operating characteristic (ROC) curve.

2.6.2. Features combined power assessment for groups discrimination using
machine learning tools

In this task, we analyzed the combined power of features to dis-
criminate between study groups (Low vs. Moderate, Low vs. Severe,
Moderate vs. Severe, All vs. All) with the helplessness of 19 Sci-learn
classifiers. The next list shows individually each used classifier plus its
hyper-parameters:

• AdaBoostClassifier (AdaBoost) - Default parameters;
• BaggingClassifier (BaggC) - Default parameters;
• DecisionTreeClassifier (DeTreeC) - max_depth was set to 5;
• ExtraTreesClassifier (ExTreeC) - n_estimators was set to 300;
• GaussianNB (GauNB) - Default parameters;
• GaussianProcessClassifier (GauPro) - 1.0*RBF(1.0);
• GradientBoostingClassifier (GradBoost) - Default parameters;
• KNearestNeighborsClassifier (KNN) - default parameters;
• LinearDiscriminantAnalysis (LinDis) - Default parameters;
• LinearSVC (LinSVC) - Default parameters;
• LogisticRegression (LogReg) - solver was set to ‘‘lbfgs’’;
• LogisticRegressionCV (LogRegCV) - cv was set to 3;
• MLPClassifier (MLP) - alpha was set to 1 and max_iter was equal

to 1000;
• OneVsRestClassifier (OvsR) - random_state was equal to 0;
• QuadraticDiscriminantAnalysis (QuadDis) - Default parameters;
• RandomForestClassifier (RF) - the max_depth, n_estimators and

max_features were set to 5, 300 and 1, respectively;
• SGDClassifier (SGD) - max_iter was 100 and tol was 0.001;
• SGDClassifier (SGDC) - Default parameters;
• Support-vector Machines (SVC) - Gamma was set to ‘‘auto’’;

Each time-series feature vector per study group comparative analy-
sis suffered a normalization by 𝑧−𝑠𝑐𝑜𝑟𝑒. Then, the model’s performance
has been evaluated by feeding the previously 19 designed and selected
machine learning models with different combinations of features, from
1 until the maximum of 120 features (meaning no feature selection —
time series of 10 non-linear features compressed by (×) 6 statistics ×

2 modalities per participant) selected by f-score [38], per comparative
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analysis, within a leave-one-out-cross-validation procedure. This proce-
dure is well-known for allowing the use of the whole dataset for testing,
without leakage between train and test sets.

2.6.3. Classification metrics
To evaluate the models’ performance, 4 metrics have been used:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝑅𝑒𝑐𝑎𝑙𝑙.
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 means how many cases did we correctly label out of all

the cases, and it is defined as,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

× 100% (19)

where, a 𝑇𝑃 (True Positives) is an outcome where the MP model
correctly predicts a positive class, a 𝑇𝑁 (True Negatives) is an outcome

here the model correctly predicts the negative class, a 𝐹𝑃 (False
ositives) is an outcome where the model incorrectly predicts the
ositive class, and, finally, 𝐹𝑁 (False Negatives) is an outcome where
he model incorrectly predicts the negative class [39].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 are performance metrics that are measured
ith 𝑇𝑃 under the spotlight. A metric such as the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 brings to

ight what was the proportion of positive values that were correctly
dentified, with the 𝑅𝑒𝑐𝑎𝑙𝑙 we visualize the proportion of 𝑇𝑃 that were
orrectly classified [39]. Both equations are defined as:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

× 100% (20)

nd

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

× 100% (21)

The 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 is the harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 and
it can be defined as,

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

× 100% (22)

The Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic Curve (ROC) is a metric that evaluates how well a model
can distinguish between positive and negative classes. It does this by
comparing the 𝑇𝑃 rate against the 𝐹𝑃 rate at different classification
thresholds. The value of AUC ranges between 0 and 1, with higher
values indicating better performance. A perfect classifier has an AUC of
1, while a random classifier has an AUC of 0.5. Using AUC allows for
a single-value measure of the model’s performance. This is especially
useful for comparing models and assessing performance in scenarios
where there is an imbalance between classes [40].

3. Results and discussion

The X-ROC classifier has been used to analyze the individual power
of each extracted feature compressed by different statistical functions
and extracted within different windowing analyses (72 features have
been generated for classification from each one of the 10 originally
defined features, as each originally defined feature has been extracted
within 6 types of windowing analysis for the 2 modalities per par-
ticipant and time-serially compressed by 6 statistics, respectively).
Fig. 4 displays the results of this analysis. The discriminating accuracy
of each feature was further examined in three binary comparisons:
𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐿𝑜𝑤 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒, and 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒, as shown
in Figs. 4(a), 4(b), and 4(c), respectively. These bar graphs indicate
how many times each feature achieved a discriminating accuracy above
70%, 80%, and 90%. Table 3 lists the feature that provides the best
individual discriminant power for each binary comparison group. In
the 𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 comparison group (Fig. 4(a)), features 𝐸𝑛, 𝐸𝑆ℎ𝑎,
𝐿𝑦𝑎, and 𝐾 displayed an accuracy value of 80% or lower. The feature
𝐻 achieved an accuracy discriminating value above 70% for nearly
ll of the features generated by this particular kind of feature (60 in
total of 72 features). The feature 𝐸𝐴 achieved the highest accuracy
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alue of 92.86%, as demonstrated in Table 3. In the 𝐿𝑜𝑤 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒 a
omparison group (Fig. 4(b)), all features demonstrated a discrimina-
ion accuracy value between 70% and 90%. According to Table 3,
eatures 𝐸𝐿𝑜𝑔, 𝐸𝑙𝑦𝑎, 𝐶𝐷, and 𝐸𝑆ℎ𝑎 provided the highest accuracy
alue of 86.11%. Finally, in the 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒 comparison group
Fig. 4(c)), all features displayed an accuracy value above 80% and
elow 90%, except the feature 𝐸𝐴 that over-passed the 90% with
discrimination accuracy of 91.18%, as indicated in Table 3. When

xamining all three graphs simultaneously, it becomes clear that the
eature originally generated through 𝐸𝐴 (both differing only on the
indow type used for analysis) from the 𝑈𝑝 body position modality
rovided the highest 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values when the 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 class is
resent in the classification pair.

Figs. 5 and 6 present the Heat-maps with classification metrics re-
ort for the comparison groups, with and without the feature selection
tep. Each heat-map uses a colorbar of greens to clearly highlight the
ccuracy, Recall, Precision, and F1-score discrimination power of the
ethod for each comparison analysis. Lighter greens indicate lower
ower, while darker greens indicate higher power. By comparing the
esults with and without feature selection, it can be seen that a feature
election process can boost the models’ performance for all comparison
roups, as expected, except just in the case of the 𝑅𝑒𝑐𝑎𝑙𝑙 metric with
lightly lower values for 𝐴𝑙𝑙 𝑣𝑠 𝐴𝑙𝑙.

Concerning Fig. 5, where we avoid the feature selection step, we can
ee that the windowing process with 𝐻𝑚 and 𝐻𝑛, with Overlap, allows
or finding the best results. The comparison group 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒
rovided the best table results with an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 85.29% and a
1 − 𝑆𝑐𝑜𝑟𝑒 of 91.23%. The 𝐴𝑙𝑙 𝑣𝑠 𝐴𝑙𝑙 group even though it reached
100% 𝑅𝑒𝑐𝑎𝑙𝑙 value, the model presented some difficulty in correctly

lassifying the 𝐹𝑃 , with the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 rounding 68.29%.
Regarding the analysis of Fig. 6, with feature selection, the 𝑅𝑒𝑐 and

he 𝐻𝑚𝑂 windows provided the best results. The 𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒
roup reached the best performance among the others, with an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
nd a 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 reaching 100%. The 𝐴𝑙𝑙 𝑣𝑠 𝐴𝑙𝑙 classification results
mproved, compared with the ones achieved without feature selection,
ith an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 78.57% and a 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 of 84.75%.

Fig. 7 shows the best performance results for each classifier without
aking into account if the feature selection stage has been made or
ot. The ROC Curves and the Confusion Matrices of the best results
resented in Fig. 7 are shown in Figs. 8 and 9, respectively.

For the binary comparison 𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 it can be seen in Fig. 7
hat the best classifiers were 𝑄𝑢𝑎𝑑𝐷𝑖𝑠 and 𝑂𝑣𝑠𝑅 with 100% for the
𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 and with 𝐴𝑈𝐶 of 1.0.
mong the 6 types of windowing analysis, the 𝐻𝑚 window achieved

he highest quantity of good results for each classifier classification
eport. The Fig. 8(a) displays the ROC of the top classification results.
he confusion matrix (Fig. 9(a) - Binary group 𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒)

ndicates 100% of discrimination accuracy for both 𝐿𝑜𝑤 class (8/8) and
𝑜𝑑𝑒𝑟𝑎𝑡𝑒 class (6/6).
On Fig. 7, for the binary comparison 𝐿𝑜𝑤 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒, the classifier

hat provided the best results was 𝑀𝐿𝑃 with 91.67% of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,
00% for the 𝑅𝑒𝑐𝑎𝑙𝑙, 90.32% of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, an 𝐹1−𝑆𝑐𝑜𝑟𝑒 of 94.92% and
𝐴𝑈𝐶 of 0.81. The windowing analyses with the best results have been
one with the window 𝐻𝑛𝑂. The ROC graph in Fig. 8(b) highlights
ifficulty in distinguishing one of the classes. Fig. 9(b) displays a
onfusion Matrix for the binary group (𝐿𝑜𝑤 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒). Results show
00% of discrimination accuracy for the 𝑆𝑒𝑣𝑒𝑟𝑒 class (28/28), but only
2.5% for the 𝐿𝑜𝑤 class samples (5/8).

For the comparison 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒 (Fig. 7), we can see the
lassifier was 𝐿𝑖𝑛𝐷𝑖𝑠 with the best performance, achieving an 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
f 94.12%, a 𝑅𝑒𝑐𝑎𝑙𝑙 of 96.43%, a 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 96.43% and an 𝐹1−𝑆𝑐𝑜𝑟𝑒
f 96.43%. The most represented windowing analysis was associated
ith the 𝑅𝑒𝑐 window. The ROC in Fig. 8(c) has an associated 𝐴𝑈𝐶

esult of 0.90, indicating a great capacity to discriminate between the
wo classes. Additionally, the Confusion Matrix displayed in Fig. 9(c)
hows a 96.43% correct prediction rate for the 𝑆𝑒𝑣𝑒𝑟𝑒 class (27/28)

nd an 83.33% (5/6) correct prediction rate for the 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 class.
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Fig. 4. X-ROC Accuracy per individual feature: (a) Low vs Moderate, (b) Low vs Severe and (c) Moderate vs Severe.

Fig. 5. Heat-map classification report – classification without Feature Selection step – best Accuracy, Recall, Precision, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒, and AUC results for each comparison group
plus the information of classifier and the window type applied for signal analysis.

Fig. 6. Heat-map classification report – classification with Feature Selection step – best Accuracy, Recall, Precision, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 and AUC results for each comparison group plus
the information of classifier, the window type applied and the number of selected features for classification.
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Table 3
X-ROC individual feature highest accuracy per binary group.

Binary group Feature Window
type

Body
position

Data
compressor

Accuracy AUC

𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐸𝐴 𝐻𝑚𝑂 𝑈𝑝 𝐾𝑢𝑟 92.86% 0.94

𝐿𝑜𝑤 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒

𝐸𝐿𝑜𝑔 𝐻𝑚, 𝐻𝑛
and 𝑅𝑒𝑐

𝑈𝑝 𝐾𝑢𝑟

86.11% 0.81
𝐸𝐿𝑦𝑎 𝐻𝑚𝑂 and

𝑅𝑒𝑐𝑂
𝑈𝑝 and
𝐷𝑜𝑤𝑛

𝐾𝑢𝑟, 𝑆𝑡𝑑
and 𝑉 𝑎𝑟

𝐶𝐷 𝐻𝑛𝑂 𝐷𝑜𝑤𝑛 𝑆𝑡𝑑 𝑎𝑛𝑑 𝑉 𝑎𝑟

𝐸𝑆ℎ𝑎 𝑅𝑒𝑐𝑂 𝑈𝑝 and
𝐷𝑜𝑤𝑛

𝑃95

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑣𝑠 𝑆𝑒𝑣𝑒𝑟𝑒 𝐸𝐴 𝐻𝑛𝑂 𝑈𝑝 𝐾𝑢𝑟 91.18% 0.79
Fig. 7. Heat-map classification report for every comparison group with the best 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 and AUC results for each one of the used classifiers plus
the information of the window type applied on signal analysis.
Fig. 8. ROC Curves for best classification results per study group: (a) Low vs Moderate, (b) Low vs Severe, (c) Moderate vs Severe and (d) All vs All.
8
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Fig. 9. Confusion Matrix for each comparison group: (a) Low vs Moderate, (b) Low vs Severe, (c) Moderate vs Severe and (d) All vs All.
At last, the multi-class comparison 𝐴𝑙𝑙 𝑣𝑠 𝐴𝑙𝑙 showed on Fig. 7 that
the classifier that obtained the best performance report was 𝐿𝑖𝑛𝐷𝑖𝑠
with 78.57% of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 89.29% for 𝑅𝑒𝑐𝑎𝑙𝑙, a 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 80.65%,
and an 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 of 84.75%. The windowing process with the high-
est amount of excellent results was related to the window 𝐻𝑚. The
Fig. 8(d) shows a huge difficulty to distinguish the Multiclass group
with a corresponding 𝐴𝑈𝐶 value of 0.76. The Fig. 9(d), illustrates
the Confusion Matrix for this comparison group, where we can see a
37.50% correct prediction for the 𝐿𝑜𝑤 class (3/8), an 83.33% correct
prediction for the 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 class (5/6) and a correct prediction of
89.29% for the 𝑆𝑒𝑣𝑒𝑟𝑒 class (25/28).

Making a comparison between the discriminatory power of individ-
ual features (Table 3) and that of combined features (Fig. 7), we can
observe an improvement in discrimination accuracy when we are using
features combination for discrimination. For Low vs Moderate, the
accuracy improved by 7.14%. For Low vs Severe, it improved by 5.56%.
And for Moderate vs Severe, it improved by 3.39%. We also observed
improved AUC values, except for the Low vs Severe comparison where
the AUC values remained unchanged between both analyses.

Globally, the comparison 𝐿𝑜𝑤 𝑣𝑠 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 had the highest over-
all results, the 𝐿𝑖𝑛𝐷𝑖𝑠, 𝑀𝐿𝑃 and 𝑂𝑣𝑠𝑅 are strictly connected with
the best-achieved overall results and the 𝐻𝑚𝑂 windowing process
appeared the most as the selected one for signal analysis.

Finally, a comparison between the present work and the previous
one with the same ECG database is presented in Table 4. As can be
seen, in the presented work, we use a different approach based on a
non-linear analysis over heart rate variability (HRV) and QRS complex
analyses. This new approach allows us to outperform the previous work
All vs All discrimination results in 7.57%. Furthermore, we cannot com-
pare the other achieved binary comparison results with the previous
work as we did not perform binary classifications between study pairs
in that work [23]. Due to the high discriminant capacity of the utilized
non-linear features, the present work represents an improvement in the
classification results.

Lastly, looking at Table 1, we can see that our results are in line
with those found in the state-of-the-art, giving us a good perspective of
9

improvising the robustness shortly. In addition, ECG presents some key
advantages when compared to other sources usually used on the state-
of-the-art for COVID-19 discrimination propose, as ECG is a low-cost,
non-invasive and easy-to-operate exam, with the possibility to perform
the test on patients that are incapable of being outside of the hospital’s
bed.

4. Conclusion

For this research, 10 non-linear features (Energy, Approximate En-
tropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov
Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation
Dimension and Detrended Fluctuation Analysis) were extracted from ECG
signals, collected from 2 different patient’s body positions. Each signal
went under a windowing process, with 1 s of length windows, the
process was applied in 6 ways of windowing signal analysis crops
and Machine Learning classifiers were employed to predict the differ-
ent evolution stages in COVID-19 (Low vs. Moderate, Low vs. Severe,
Moderate vs. Severe) and 1 Multi-class comparison (All vs. All).

The best 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 levels ranged between 78.57% and 100%. The
𝑂𝑣𝑠𝑅 with 𝐻𝑚𝑂, the 𝑀𝐿𝑃 with 𝐻𝑚𝑂 or the 𝐿𝑖𝑛𝐷𝑖𝑠 with 𝑅𝑒𝑐 were
the classifiers that obtained the best results with their corresponding
window types. These results showed the applied methodology could be
considered a good tool for distinguishing the different stages of COVID-
19 through the use of ECG signals. Additionally, compared to prior
research utilizing the same database, this study demonstrates a 7.57%
increase in diagnostic precision for the All vs All comparison.

For future research, extracting more features to refine and improve
the system will be important. One possible way of accomplishing
that would be to analyze the ECG signals by time–frequency domain
transforms. Additionally, it would be interesting to analyze also ECG
data collected from subjects with the same severity of COVID-19, with
guaranteed ventilatory control (i.e., a standard respiratory rate was
maintained during collection). The results should also be updated with
a larger and more balanced population to ensure a more consistent
generalization.
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Table 4
Comparison between present study and a previous work with the same ECG database.

Ref. Summary Extracted features Classification accuracy

Low vs
Moderate

Low vs
Severe

Moderate vs
Severe

All vs All

[23] An automated machine learning system was
employed to classify COVID-19 severity. ECG signals
were processed to obtain QRS complexes and HRV
metrics combined to serve as entries for several
machine-learning algorithms for All vs All
classification, with LinearSVC performing the best.

ApEn MSE 1, ApEn MSE 2, ApEn MSE 3,
ApEn MSE 4, ApEn MSE 5, Approximate
Entropy, DET, ENT, Heartbeats, HRV index,
LF/HF, Lmax, L and Vmax, NN50, pNN50,
Peak HF, Peak LF, Peak VLF, Power HF,
Power LF, Power NU/HF, Power NU/LF,
Power VLF, PRSA AC, PRSA DC, RMSSD,
RR, SampEn MSE 1, SampEn MSE 2, Sample
Entropy, SD1 Poincare, SD2 Poincare,
SDANN, SDNN index, Stdev HR, Stdev NN,
TINN, Average HR, Average NN.

– – – 71.00%
(Lin-
earSVC)

Present
work

An automated machine learning system was
developed to classify the severity of COVID-19 based
on 10 non-linear features extracted from ECG
signals. The features were collected from 2 different
patient positions and analyzed using 6 different
windowing signal analyses. The features’ individual
and combined power for discriminating between
different degrees of COVID-19 severity were
evaluated by several machine learning approaches,
with LinDis, MLP, and QuadDis producing the best
evaluation metrics (with combined features on their
entries) for Low vs Moderate, Low vs Severe,
Moderate vs Severe and All vs All analyses.

𝐸𝑛, 𝐸𝐴, 𝐸𝐿𝑜𝑔, 𝐸𝑆ℎ𝑎, 𝐸𝐻 , 𝐸𝐿𝑦𝑎, 𝐻 , 𝐾,
𝐶𝐷, and 𝐷𝐹𝐴

100%
(QuadDis)

91.67%
(MLP)

94.57%
(LinDis)

78.57%
(LinDis)
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