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Abstract: Detecting emotions is a growing field aiming to comprehend and interpret human emotions
from various data sources, including text, voice, and physiological signals. Electroencephalogram
(EEG) is a unique and promising approach among these sources. EEG is a non-invasive monitoring
technique that records the brain’s electrical activity through electrodes placed on the scalp’s surface.
It is used in clinical and research contexts to explore how the human brain responds to emotions and
cognitive stimuli. Recently, its use has gained interest in real-time emotion detection, offering a direct
approach independent of facial expressions or voice. This is particularly useful in resource-limited
scenarios, such as brain–computer interfaces supporting mental health. The objective of this work
is to evaluate the classification of emotions (positive, negative, and neutral) in EEG signals using
machine learning and deep learning, focusing on Graph Convolutional Neural Networks (GCNN),
based on the analysis of critical attributes of the EEG signal (Differential Entropy (DE), Power Spectral
Density (PSD), Differential Asymmetry (DASM), Rational Asymmetry (RASM), Asymmetry (ASM),
Differential Causality (DCAU)). The electroencephalography dataset used in the research was the
public SEED dataset (SJTU Emotion EEG Dataset), obtained through auditory and visual stimuli
in segments from Chinese emotional movies. The experiment employed to evaluate the model
results was “subject-dependent”. In this method, the Deep Neural Network (DNN) achieved an
accuracy of 86.08%, surpassing SVM, albeit with significant processing time due to the optimization
characteristics inherent to the algorithm. The GCNN algorithm achieved an average accuracy of
89.97% in the subject-dependent experiment. This work contributes to emotion detection in EEG,
emphasizing the effectiveness of different models and underscoring the importance of selecting
appropriate features and the ethical use of these technologies in practical applications. The GCNN
emerges as the most promising methodology for future research.

Keywords: deep learning; emotion detection; emotion recognition; electroencephalogram; graph
convolutional neural networks; machine learning

1. Introduction

Human emotion detection and recognition are crucial in advancing human interactions
and technological systems. In recent years, the application of signal processing techniques,
machine learning, and artificial intelligence has shown promise in analyzing electroen-
cephalography (EEG) signals for emotion classification [1]. EEG is an electrophysiological
recording of brain activity that provides information about an individual’s emotional states,
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offering a window into understanding the neural responses underlying different emotional
stimuli [2].

Emotion recognition focuses on various modalities, such as audiovisual expressions,
body language, and physiological signals. Compared to other modalities, physiological
signals, such as electroencephalography (EEG), electrocardiography (ECG), and electromyo-
graphy (EMG), have the advantage of being difficult to hide or disguise. In recent years,
due to the rapid development of non-invasive, easy-to-use, and more affordable EEG
recording devices compared to other acquisition techniques, such as Magnetic Resonance
Imaging (MRI) and Magnetoencephalography (MEG), EEG-based emotion recognition has
received increasing research attention [3] and applications (Zhong, Wang, and Miao) [4].
While EEG has limited spatial resolution and requires many electrodes placed in various
locations on the head, it provides adequate time resolution, allowing researchers to study
phase changes in response to emotional stimuli. Additionally, EEG is non-invasive, fast,
and inexpensive, making it a more common method for studying the brain’s responses to
emotional stimuli [5].

Various efforts have been made to explore the use of machine learning models, such
as Logistic Regression (LR), k-nearest Neighbors (KNN), Support Vector Machines (SVM),
Deep Neural Networks (DNN), and Dynamic Graph Convolutional Neural Networks
(DGCNN), in analyzing emotions in EEG signals; however, many challenges persist [6,7].
The overlap of brain activation patterns between different emotions, inter-individual
variability, and inherent noise in EEG signals are just a few examples of the obstacles that
must be overcome to achieve accurate and robust classification [8].

The theoretical background of this research is based on the application of machine
learning and deep learning techniques, which have emerged as a promising approach for
advancing emotion recognition from EEG signals [9]. LR models the probability of an
emotional state as a function of the EEG features, while KNN classifies emotions based on
the similarity of EEG patterns to those of labeled examples. SVM, on the other hand, can
capture nonlinear relationships between EEG features and emotional states by using kernel
functions to map the data into a higher-dimensional space. To address these limitations,
deep learning approaches have gained significant attention in the field of EEG-based
emotion recognition [10]. Deep Neural Networks (DNNs) are a class of deep learning
models that can automatically learn hierarchical representations from raw EEG signals,
enabling the capture of complex nonlinear patterns associated with emotional processing in
the brain. By stacking multiple layers of artificial neurons, DNNs can extract increasingly
abstract and meaningful features from the EEG data, leading to superior performance in
emotion classification tasks compared to traditional machine learning models [11].

Furthermore, the incorporation of graph-based deep learning techniques, such as
Graph Convolutional Neural Networks (GCNNs), has demonstrated the ability to model
the spatial relationships between EEG electrodes. EEG signals can be represented as a
graph, where the electrodes are the nodes and the connections between them reflect the
spatial dependencies in the brain [4]. GCNNs leverage this graph structure to learn features
that capture the complex spatial and temporal dynamics of EEG signals, providing a more
comprehensive understanding of the neural correlates of emotions.

Emotion classification in EEG signals represents a multidisciplinary challenge that
involves the intersection of digital signal processing, machine learning, and neuroscience.
The importance of emotion classification using EEG signals is significant for multiple
applications. However, there is a lack of scientific publications comprehensively testing
and comparing various models to solve this problem. To address this gap, the main
objective of this research is to evaluate the effectiveness of different machine learning
models, ranging from more conventional techniques like Logistic Regression, K-Nearest
Neighbors, and Support Vector Machines to advanced deep learning approaches such as
Deep Neural Networks and Graph Convolutional Neural Networks (GCNNs). By applying
these diverse models to analyze the key EEG signal attributes, the study aims to deepen the
understanding of the complex relationships between brain activity patterns and emotional
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states. This work seeks to identify the best-performing models and contribute to the
evolution of the field, with the potential to positively impact society and technology.

The novelty of this research lies in its comprehensive and comparative analysis of a
wide range of machine learning and deep learning approaches, including the innovative
use of GCNNs, to advance emotion detection from EEG signals and address the gaps in the
existing literature.The use of DGCNNs in this context is an innovative approach, leveraging
the network’s ability to learn hierarchical and dynamic representations and capture the
temporal evolution of neural patterns.

2. Related Works

The electroencephalogram (EEG) finds wide application across various domains. Its
role stands out notably in the realm of emotion recognition. By identifying brain patterns,
EEG translates emotional nuances such as happiness, sadness, and stress, as identified
by Liu et al. [6] and Zheng, Zhu, and Lu [12]. Thus, EEG bridges the gap between brain
electrical activity and the complexity of human emotions, driving innovations across
diverse fields.

Zheng, Zhu, and Lu (2019) [12] address the temporal stability of EEG patterns over
time. The study evaluates feature extraction, selection, smoothing, and pattern classification
methods. The authors utilized the DEAP and SEED datasets. The Discriminative Graph
Regularized Extreme Learning Machine (GELM) algorithm with features of differential
entropy achieves the best average accuracy compared to the results of KNN, Logistic
Regression, and SVM classifiers. The findings demonstrate that stable patterns exhibit con-
sistency across sessions, revealing specific characteristics for positive, neutral, and negative
emotions in different brain regions and frequency bands.

Gan et al. (2019) [9] explores deep learning techniques to identify emotional states
from voice signals and facial expressions using frequency band peculiarities. Additionally,
the study analyzes the application of differential entropy (DE) to enhance accuracy in signal
feature extraction. The study highlights the capability of deep neural networks to analyze
multiple modalities to improve cross-cultural emotion identification.

Recently, Li et al. (2021) [13] proposed using RNNs to learn spatial topological rela-
tionships among channels by scanning electrodes vertically and horizontally. However,
the model must effectively capture the complex spatial relationships present in EEG signals.

Yongqiang [14] (2021) proposed the ECLGCNN model, a fusion of LSTM and GCNN,
to enhance emotion recognition. This method extracts differential entropy (DE) from
segments to form a feature cube. Multiple GCNNs extract information from the graphical
domain of each cube, while LSTM cells memorize changes in the relationships between
EEG channel pairs and extract temporal information.

Zhong, Wang, and Miao (2022) [4] proposes a regularized graph neural network
for emotion recognition. The model captures the relationships between local and global
channels in EEG signals. The adoption of graphs demonstrates a step forward by effectively
incorporating the complex spatial relationships present in EEG data.

The recent work of Zhang et al. (2022) [15] introduces the concept of the Graph
Convolutional Broad Network (GCB-net), which employs regular convolution to explore
deep information, abstracting high-level features from graph representations. Additionally,
it incorporates a Broad Learning System, acting as an adaptive layer to select appropriate
features. This approach aims to capture high- and low-frequency information from EEG
signals, enabling advancements in classification through a broad network.

Zhang et al. (2023) [10] enhanced the DGCNN model by introducing a dispersion
constraint in the graph representation G and proposing a solution for minimization with
this constraint (SparseDGCNN). This method demonstrated superior performance to its
non-sparse version, highlighting the effectiveness of introducing dispersion in the irregular
graph connectivity patterns of EEG signals for emotion classification. The SparseDGCNN
approach combines the DGCNN architecture with sparsity techniques, allowing for the
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representation of temporal and spatial patterns in EEG signals while reducing computa-
tional complexity.

Jeong, Kim, and Kim (2023) [16] proposed a hierarchical neural network with self-
attention, extracting local and global features for EEG-based emotion recognition using
a Hierarchical Space-temporal Context Feature Learning Model (HSCFLM). They evalu-
ated the DEAP, MAHNOB-HCI, and SEED datasets. Pre-processing involved band-pass
filtering, resolution reduction, blink artifact removal, segmentation, and spectral analysis
for each frontal, temporal, central, parietal, and occipital region. Methods such as CNN,
LSTM, BGRU, CRNN, and HA-BGRU were compared, where multichannel EEG signals
were applied to each neural network without dividing the brain into regions. Proposed
methods like R2G HA-BGRU, R2GTF, R2G HAS-BGRU, and HSCFLM divided the brain
into nine defined regions, grouping corresponding electrodes by region. The best results
were obtained with the MAHNOB-HCI dataset, achieving two-level classification with
an accuracy for valence, arousal, and dominance of 93.3%, 91.6%, and 92.8%, respectively.
The three-level classification with the same dataset reached 88.9%, 89.1%, and 89.4%.

Zhang, X., et al. (2023) [17] developed a novel self-training maximum classifier
discrepancy (SMCD) method for EEG signal emotion recognition. The proposed approach
leverages a feature generator and two classifiers to detect the decision boundary of a
particular task, thereby maximizing the discrepancies between the two classifiers’ outputs.
This method effectively deals with domain transfer problems by using unlabeled test data
to fully utilize knowledge from the new subject and reduce the domain gap. Additionally,
a 3D Cube is constructed to incorporate the spatial and frequency information of the
EEG data, creating input features for a Convolutional Neural Network (CNN). Extensive
experiments on the SEED and SEED-IV datasets demonstrate the superior performance of
the proposed method over state-of-the-art methods.

The authors Dwivedi, Verma, and Taran (2024) [18] transformed EEG signals from the
GAMEEMO dataset into images using time–frequency representation techniques, achieving
the best results with Smoothed Pseudo Wigner–Ville Distribution (SPWVD). Subsequently,
they applied the GoogleNet network to extract features and optimized its parameters.
Moreover, they employed Bayesian optimization (BO) to automate the selection of CNN
hyperparameters to predict four emotional states. The method achieved an accuracy of
84.2%, and the AUC for the boring, horror, calm, and funny classes were 0.9712, 0.9596,
0.9597, and 0.9625, respectively.

Fan et al. (2024) [19] proposed a dual-module approach using an enhanced capsule
network and long short-term residual memory (ICaps-ResLSTM). This approach consists
of ICapsNet to capture spatial information from EEG signals and ResLSTM to extract high-
level temporal information, obtaining high-resolution spatiotemporal features. The average
accuracy of 10-fold for arousal, valence, and dominance in the DREAMER dataset reached
94.97%, 94.71%, and 94.96%, respectively.

Roshdy et al. (2024) [20] evaluated the combination of facial expression analysis from
DeepFace with CNN based on EEG signals. In this approach, raw EEG data undergo
processing to generate a heat map of brain activity. The results for happy and sad emotions
achieved an efficiency of 91.21% when integrating CNN with DeepFace CNN.

These approaches can potentially deepen our understanding of the complex interac-
tions between EEG channels and provide significant gains in emotion classification accuracy
Rajwal and Aggarwal (2023) [21]. The convergence of various studies emphasizes the im-
portance of exploring graph neural network architecture to enhance EEG signal analysis,
offering an exciting perspective for future advances at the interface of neuroscience, signal
processing, and machine learning.

In an increasingly user-centric context, interpreting and reacting to human emotions
becomes crucial for developing more effective interfaces and interactions. Understanding
emotional responses allows the creation of more empathetic technologies which are capa-
ble of dynamically adapting to users’ needs and emotional states. Therefore, this work
evaluates the main attributes of the EEG signal and analyzes the classification of emotions
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using machine learning and deep learning. Table 1 compiles and presents the results of
each of the referenced studies.

Table 1. Main works identifying the state of the art SOTA.

Year Authors Model DATASET Features Highest Accuracy

2019 ZHENG, ZHU, AND LU [12] KNN, LR, SVM, GELM SEED DE, PSD, DASM, RASM, DCAU 91.07%

2021 LI et al. [13] Bi-Hemispheric Discrepancy Model
-4 RNNS in 2 spatial orientations SEED, SEED IV, MPED DE—SEED e SEED IV

STFT—MPED

SEED: 93.12%
SEED IV: 74.35%
MPED: 40.34%

2021 YONGQIANG [14] LSTM + GCNN DEAP DE 90.45%

2022 ZHANG et al. [15] GCB-net SEED, DREAMER DE, PSD, DASM, RASM, DCAU—SEED
PSD—DREAMER

SEED: 92.30%
DREAMER: 86.99%

2022 ZHONG, WANG, AND MIAO [4] RGCNN SEED, SEED IV DE SEED: 94.24%
SEED IV: 79.37%

2023 ZHANG et al. [10] sparse DGCNN SEED, DEAP, DREAMER e CMEED DE, PSD, DASM, RASM e DCAU—SEED e DEAP
PSD—DREAMER, CMEED

SEED: 98.53%
DEAP: 95.72%
DREAMER: 92.11%
CMED: 91.72%

2023 JEONG, KIN, AND KIN [16] HSCFLM DEAP, MAHNOB-HCI, and SEED local and global features
DEAP: 92.10%
MAHNOB-HCI: 93.3%
SEED: 90.9%

2023 Zhang, X., et al. [16] Self-training Maximum
ClassifierDiscrepancy (SMCD SEED, SEED IV DE as 3D cube SEED: 96.36%

SEED IV: 78.49%

2023 DWIVEDI VERMA AND TARAM [18] SPWVD GAMEEMO GoogleNet 84.2%

2024 FAN et al.[19] ICaps-ResLSTM DEAP, DREAMER ICapsNet, ResLSTM DEAP: 97.94%
DREAMER: 94.71%

2024 ROSHDY et al. [20] DeepFace and CNN Local CNN 91.21%

3. Materials and Methods

This study aims to investigate EEG data using machine learning techniques for pattern
recognition and extracting emotion-relevant information. In the following sections, the
methodological aspects applied, the dataset used, research factors, and measurement
variables will be described.

3.1. EEG Datasets

The choice of EEG dataset plays a crucial role in conducting research and studies re-
lated to emotion recognition. However, obtaining suitable EEG datasets can be challenging
due to several inherent difficulties.

Firstly, the availability of emotion-specific EEG datasets is relatively limited compared
to other research areas [2]. This is due to EEG data’s sensitive and restricted nature, which
are collected directly from individuals’ brains. As a result, researchers may face difficulties
finding appropriate datasets that align with their specific research objectives.

Furthermore, these datasets often have size, security, and cost limitations. EEG data
are voluminous regarding the number of samples and dimensions, which can restrict access
to larger datasets [22]. Additionally, the security and privacy of participants involved
in EEG data collection are paramount concerns, often requiring stringent protocols for
data acquisition, storage, and sharing [1]. This can further complicate the accessibility of
publicly available EEG datasets. Moreover, preparing and curating EEG data can be costly
in terms of human and financial resources, as EEG data collection, processing, and labeling
require technical expertise and specialized equipment.

The choice of an EEG dataset is crucial for the success of emotion recognition re-
search. Despite the abovementioned challenges in obtaining such data, several public
and private datasets have been instrumental in advancing the field [23]. These datasets
provide researchers with a rich source of brain signals recorded during different types
of emotional stimuli and activities, enabling the analysis and development of robust and
effective emotion recognition algorithms.

Among the notable EEG datasets, it is possible to highlight the following:

• SEED (SJTU Emotion EEG Dataset)—[12]
• DEAP (Database for Emotion Analysis using Physiological Signals) Dataset—[24]
• DREAMER (Database for Emotion Analysis using Physiological Signals) Dataset—[25]
• TUH EEG (Temple University Hospital EEG) Dataset—[26]
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• MPI LEMON (Max Planck Institute for Biological Cybernetics Linear EEG data) Dataset—[27]
• MAHNOB HCI (Multimedia Analysis and Human-Computer Interaction)—[28]

These datasets vary in size, format, quality, and purpose, but they all provide valuable
information for analyzing EEG patterns associated with different emotions.

For example, the SEED (SJTU Emotion EEG Dataset) contains EEG data from multiple
subjects experiencing different emotional stimuli, making it a valuable resource for training
and testing emotion recognition algorithms [12]. The DEAP and the DREAMER, on the
other hand, present multimodal physiological signals, including EEG, collected during the
presentation of audiovisual stimuli designed to evoke different emotions [24,25]. The TUH
EEG Dataset and the MPI LEMON Dataset provide clinical EEG data collected from
patients in hospital settings, enabling the exploration of emotions in medical contexts [26].
The MAHNOB HCI Dataset was designed to capture a wide range of human emotions,
collecting data from subjects exposed to varied emotional stimuli such as images, videos,
and music. It contains detailed records of EEG signals from each subject, enabling the
analysis of variations in brain patterns during different emotional states [28].

Among the various datasets available for research in emotion recognition, the SEED
(SJTU Emotion EEG Dataset) stands out as a notable option due to its distinct characteristics
and peculiar advantages. SEED provides a controlled environment for acquiring EEG
data related to emotions, encompassing a diverse and well-defined range of emotional
stimuli, resulting in a comprehensive spectrum of captured emotional responses. This,
in turn, enriches the intrinsic variety and representativeness of the dataset. Additionally,
the dataset features high-quality EEG signals, with rigorous control over interference and
noise, ensuring the results’ reliability. The precise spatial resolution of the electrodes used
in SEED is worth noting, enabling the accurate identification of brain activities in specific
regions. This feature is crucial in understanding the correlations between brain patterns
and emotional states, fostering more thorough analyses and deeper correlations. Therefore,
the selection of SEED as the basis for this dissertation is grounded in these advantages,
which allow for the in-depth exploration of the complex interactions between the brain and
emotions through machine learning techniques.

3.2. SEED

The SJTU Emotion EEG Dataset (SEED) is a dataset that captures brain responses
associated with different emotional states. EEG data were collected from fifteen subjects
(seven males and eight females, mean age = 23.27). These EEG data were obtained through
auditory and visual stimuli in the form of excerpts from Chinese emotional movies. While
participants watched 15 four-minute movie excerpts with three types of emotion (positive,
negative, and neutral), their EEG data were recorded by an ESI NeuroScan system with
62 channels at a sampling rate of 1000 Hz. The EEG data were downsampled to 200 Hz and
manually checked to remove EOG and EMG artifacts [29]. EEG recordings were captured
for each subject over three chronologically disconnected sessions, and each session repeated
the same experiment. Additionally, SEED does not contain arousal information; therefore,
it only recognized positive, neutral, and negative emotions in SEED. After preprocessing
with a band-pass filter (between 0.3 and 50 Hz), five features (DE, PSD, DASM, RASM,
and DCAU) were extracted with a 1-second window in five bands: delta (0.5–4 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma (>30 Hz) bands.

3.3. EEG Pre-Processing

It is imperative to understand the intricate feature extraction process in order to under-
stand the complexities of analyzing EEG signals in emotion recognition. This process is piv-
otal in unraveling significant insights embedded within EEG data, facilitating subsequent
classification and recognition tasks. The multifaceted nature of EEG signals necessitates a
meticulous approach across various domains, including time and frequency, each offering
unique advantages and challenges. In the following discussion, the fundamental principles
and methodologies in extracting features from EEG signals are explored, shedding light on
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the diverse strategies employed to decipher the intricate interplay between brain dynamics
and emotional states.

3.3.1. Feature Extraction

The analysis of EEG signals is a complex task due to the multidimensional and
dynamic nature of these signals [30]. Therefore, proper feature extraction is crucial to
highlight important information that can be used in subsequent processes of classification
and emotion recognition [31].

Feature extraction is conducted in three main dimensions: the time domain, the frequency
domain, and the combination of both domains. In the time domain, various statistical
attributes are directly extracted from EEG signals. Among these attributes, the mean, standard
deviation, kurtosis, and skewness stand out, providing information about central tendency,
dispersion, and signal shape [32]. Additionally, temporal features such as zero-crossing rate
and signal energy are also used to understand aspects of temporal variation.

In the frequency domain, techniques such as the Fourier Transform are applied to
map EEG signals from the time domain to the frequency domain. This allows the analysis
of spectral components present in the signals, revealing patterns of activity in different
frequency bands [22]. Spectral features such as power spectral density (PSD) and the ratio
between frequency bands are extracted to capture the distribution of energy across the
frequency spectrum [7].

Combining features extracted from both the time and frequency domains provides a
comprehensive representation of EEG signals, allowing for the identification of discrimi-
native patterns related to emotions [14]. This feature extraction step is crucial for feeding
the classification algorithms employed, enabling the development of robust emotional
recognition models from EEG signals.

In the time domain, advantages include directly representing EEG signals in their raw
form, allowing for the direct visualization of temporal variations [32]. Features such as
peak amplitudes and durations can be observed, preserving important information about
temporal dynamics. However, there are disadvantages, such as susceptibility to noise,
as EEG signals can be affected by various types of interference. Additionally, analyzing
complex patterns in temporal signals can be challenging, significantly when multiple brain
activities are overlapping [5].

In the frequency domain, the main advantage is spectral characterization, which
enables the identification of activity patterns in different frequency bands such as delta,
theta, alpha, beta, and gamma, providing information about specific brain activities [30].
The detection of spectral components such as frequency peaks is also possible. However,
there is a disadvantage associated with the loss of temporal information, as the Fourier
transformation does not preserve the temporal sequence of events. Additionally, the overlap
of different brain activities in the same frequency band can make it difficult to distinguish
between these activities [32].

The time–frequency domain combines the advantages of the previous domains, al-
lowing for the visualization of how spectral features evolve [7]. It is suitable for detecting
rapid changes in spectral features, such as transient frequency peaks, indicating dynamic
changes in the signal. However, it presents limitations, such as limited resolution due to
the Heisenberg uncertainty principle, which imposes a trade-off between temporal and
frequency resolution. Additionally, transforming the signal into the time–frequency domain
requires higher computational complexity [30].

In summary, the choice of EEG analysis domain depends on the objectives and context
of the analysis. The time domain is suitable for studying rapid and complex events, and the
frequency domain is useful for characterizing different brain activities. In contrast, the time–
frequency domain combines the former’s advantages but requires the consideration of
resolution and computational complexity [8].

The SJTU Emotion EEG Dataset (SEED) provides some intrinsic characteristics of
electroencephalography (EEG) signals that can be explored as measurement variables for
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the analysis of relevant patterns in identifying participants’ emotions. These characteris-
tics include the following:

• Differential entropy (DE);
• Power spectral density (PSD);
• Differential asymmetry (DASM);
• Rational asymmetry (RASM);
• Asymmetry (ASM);
• Differential causality (DCAU).

The rationale for including these specific EEG features is that the dataset already
includes them, but also because each measurement variable has a unique characteristic
related to the EEG signal. The power spectral density (PSD) describes power distribution
across different frequency bands of the EEG signal, providing valuable insights into brain
activity in different emotional states. The differential entropy (DE) captures the complexity
of the EEG signal, serving as a measure of uncertainty associated with different data
samples, which is crucial for emotion analysis.

SEED also provides features that reveal information about asymmetry between brain
hemispheres. The differential asymmetry (DASM) technique provides a measure of the
difference in electrical activities between the left and right hemispheres, while rational
asymmetry (RASM) and asymmetry (ASM) measure imbalances in brain activities between
specific pairs of electrodes. These features are of great importance as many studies have
linked hemispheric asymmetries to different emotional states [13,33,34].

Additionally, the SEED dataset includes differential causality (DCAU), which explores
the causal relationships between different brain regions. This feature provides insights
into how different brain areas interact and influence each other, which is crucial for under-
standing the neural basis of emotions. Understanding the fundamental characteristics of
electroencephalogram (EEG) signals, particularly their frequency and amplitude, is crucial
for accurate emotion analysis as these signals reflect brain activity and exhibit variations
linked to different mental states. The traditional frequency bands—delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz)—each correspond to
specific neural functions, with delta associated with deep sleep, alpha with a relaxed state,
beta with active mental engagement, and gamma with heightened cognitive processing.
Amplitude, which indicates the intensity of neural activity, varies with mental states; for
example, higher alpha amplitudes occur during relaxation, while beta amplitudes increase
during intense cognitive tasks. The interplay between frequency and amplitude provides
insights into distinct emotional and cognitive states, enabling effective emotion classifica-
tion based on EEG signals. Understanding these characteristics allows the identification
of patterns within the different frequency bands, thereby enhancing emotion detection
capabilities through EEG analysis.

The attributes PSD, DE, DASM, RASM, ASM, and DCAU have the following respec-
tive dimensions: 310 (62 electrodes × 5 bands), 310 (62 electrodes × 5 bands), 135 (27 pairs of
electrodes × 5 bands), 135 (27 pairs of electrodes × 5 bands), 270 (54 pairs of
electrodes × 5 bands), and 115 (23 pairs of electrodes × 5 bands). A summary is presented
in Table 2.

Table 2. SEED dataset features description.

Feature
Number of EEG Features per Experiment

δ (0.5–4 Hz) θ (4–8 Hz) α (8–13 Hz) β (13–30 Hz) γ (30–100 Hz)

PSD 62 62 62 62 62
DE 62 62 62 62 62

DASM 27 27 27 27 27
RASM 27 27 27 27 27
ASM 54 54 54 54 54

DCAU 23 23 23 23 23
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3.3.2. Feature Smoothing

Utilizing the method of feature smoothing through linear dynamical systems (LDS)
offers a promising approach for processing electroencephalography (EEG) signals. One of
the main advantages of this approach is the ability to reduce noise in EEG signals, resulting
in smoother and more representative features. This is crucial as EEG signals often suffer
from various types of interferences, such as muscle and electrical artifacts, which can
compromise the accuracy of analyses [32]. In the case of SEED, the authors employed
the LDS method to filter out components not associated with emotional states (noise and
artifacts) and consider emotional states’ temporal dynamics. By smoothing features, LDS
can contribute to removing these interferences, thus improving the quality of extracted
information and, consequently, the accuracy of emotional analyses [5].

Furthermore, using LDS in feature smoothing allows for incorporating information
from previous states, creating a more coherent temporal relationship between data. This
is particularly relevant in EEG as brain activity is inherently time-dependent. Through a
sequential approach, LDS considers the temporal evolution of features, providing a more
dynamic representation of EEG signals and thus preserving relevant temporal information
for emotion analysis [35].

However, it is essential to note that the use of LDS for feature smoothing also faces
challenges. One of the main challenges is the trade-off between smoothing and preserving
important information. In some cases, excessive smoothing can lead to the loss of relevant
details, affecting the precision of analyses. Additionally, applying LDS requires a good
understanding of the properties of the underlying dynamical system in EEG data, which
can be a complex task and may require proper adjustments [36].

In summary, feature smoothing through LDS presents significant advantages for
processing EEG signals, reducing noise, improving information quality, and preserving
temporal information. However, it is essential to consider the challenges associated with
the excessive smoothing and modelling of dynamical systems, aiming for a balance that
results in more reliable and accurate emotional analyses.

3.4. Experimental Design

Logistic Regression (LR) and K-Nearest Neighbors (KNN) are commonly used models
for EEG-based emotion recognition due to their simplicity, interpretability, and computa-
tional efficiency [12]. These models can handle high-dimensional EEG features without
complex tuning, establishing a baseline of accuracy. However, they may struggle to capture
complex nonlinear patterns in the EEG data. On the other hand, Support Vector Machines
(SVM) can handle high-dimensional EEG features and can also capture nonlinear rela-
tionships between EEG features and emotional states using kernel functions. SVM is a
widely used benchmark model in the literature for emotion recognition tasks [7]. Deep
Neural Networks (DNN) can automatically learn hierarchical representations from raw
EEG signals, enabling the capture of complex nonlinear patterns. DNN can leverage
large-scale EEG datasets to achieve state-of-the-art performance in emotion recognition.
However, DNN requires extensive computational resources, which can be a limitation for
practical applications [18]. Graph Convolutional Neural Networks (DGCNN) can incor-
porate the spatial relationships between EEG electrodes by modeling the EEG data as a
graph and also learning dynamic representations of EEG signals, capturing the temporal
evolution of brain activity patterns. Compared to DNN, DGCNN has significantly reduced
training time, making it more practical for applications [16]. In summary, while LR and
KNN provide a simple and efficient baseline, more advanced models like SVM, DNN,
and DGCNN can capture complex nonlinear patterns in EEG data and achieve higher accu-
racy in emotion recognition tasks, with DGCNN offering a balance between performance
and computational efficiency.

A meticulous selection process was employed regarding the parameters used for each
of the models. For the K-Nearest Neighbors (KNN) classifier, the Euclidean distance is
chosen as the distance metric, and the number of nearest neighbours was adjusted in the
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range of [3, 10] to find the best hyperparameter. For Logistic Regression (LR), the parameters
are calculated using maximum likelihood estimation, a standard function provided by the
scikit-learn module. For the Support Vector Machine (SVM) classifier, the function in the
scikit-learn module with a linear kernel is adopted, and the parameter C is defined through
grid searches in the sets [2(−10), 2(−9), ..., 210] and [0.1, 20], with a step of 0.5 for large and
small step situations, respectively.

For the DNN model used in this work, there are three hidden layers with 128, 64,
and 32 hidden units, showcasing the adaptability of the model. The output layer has three
units corresponding to three emotions. The non-linear activation function used is ReLU.
The optimization algorithm used was RMSProp, and the number of epochs was set to
5000, demonstrating the model’s ability to handle large datasets. For the DGCNN model,
the input layer corresponds to the EEG features extracted from multiple frequency bands,
highlighting its versatility in handling diverse data. All other hyperparams used in each
model are described in the Table 3.

Table 3. Hyperparameters for Machine/Deep Learning Models.

Model Hyperparameter Values/Description

Logistic Regression (LR) Penalty “L2”
Solver “lbfgs”

K-Nearest Neighbors (KNN) K 3 to 10
Distance Metric p = 2 (Euclidean Distance)

Support Vector Machine (SVM)

Kernel Linear
Penalty “L2”

Loss “squared hinge”

C Grid Search: [2(−10), 2(−9), ..., 210] and
[0.1, 20]

Deep Neural Network (DNN)

Hidden Layers 128 × 64 × 32
Activation Function ReLU

Optimization RMSProp
Epochs 5000

Learning Rate 0.007

Graph Convolutional
Neural Network (GCNN)

Chebyshev Order 2
Convolution Layer 32
Activation Function ReLU

Optimization Adam
Epochs 20

Learning Rate 0.01
Weight of Decay 0.005

After the graph filtering operation, there is a 1 × 1 convolutional layer, which aims
to learn discriminative features among the various frequency domains. Additionally,
to achieve the network’s non-linear mapping capability, the ReLU activation function is
adopted to ensure that the outputs of the graph filtering layer are non-negative. Finally,
the outputs of the activation function are fed into a multi-layer fully connected network,
and a softmax function is also used to predict the desired class label information from the
input EEG features.

The research was conducted on hardware running Ubuntu 20, with an Intel Core i3
4005U processor, 8 GB DDR3 RAM, and no GPUs. The software environment utilized
Python 3.7.16, scikit-learn 1.0.2, and PyTorch 1.13.1.

Figure 1 demonstrates a summary of the methodology used in this work.
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Figure 1. Methodology for acquisition, processing, and classification of electroencephalography data.

Results Analysis

According to [6,12,13,37], there are two main types of experiments to evaluate the
performance of emotion recognition in EEG signals. The first type of experiment is “subject-
dependent”, while the second is “subject-independent”.

In the subject-dependent approach, data from a particular subject are divided into
training and testing sets. In other words, data collected from a specific subject are used to
train and test the model. This allows for the evaluation of the model’s ability to recognize
emotions from the subject’s EEG data. In the case of the SEED dataset, the first nine trials of
EEG data are used as the training set, and the remaining six as the testing set, as shown in
Figure 2. Then, the recognition accuracy corresponding to each period is obtained for each
subject. Finally, the mean classification accuracy and standard deviation of all 15 subjects
over two sessions are calculated. However, this approach may lead to biased results as
the model may memorize specific patterns of a subject, impairing its generalization to
other subjects.

On the other hand, in the subject-independent approach, data from one set of subjects
are used to train the model, and data from a different set of subjects are used to test it. In this
case, the model’s ability to generalize to subjects not seen during training is evaluated. This
provides a more realistic assessment of the model’s performance in real-world scenarios,
where it needs to recognize emotions from unknown subjects. However, this approach can
be more challenging as it requires the model to capture general patterns of emotion instead
of relying on specific characteristics of each subject.
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Figure 2. Subject-dependent approach.

In summary, the subject-dependent approach evaluates the model’s performance
in recognizing emotions from a specific subject. In contrast, the subject-independent
approach assesses its performance in generalizing to subjects unseen during training. Both
approaches have advantages and challenges, and the choice between them depends on the
study’s objectives and the nature of the EEG data. The subject-dependent approach was
used in this study.

4. Results and Discussion

In this section, the results achieved through the application of machine learning
models, namely Logistic Regression (LR), K-Nearest Neighbors (KNN), Support Vector
Machines (SVM), Deep Neural Networks (DNN), and Graph Convolutional Neural Net-
works (DGCNN), are presented. Emotion (positive, negative, and neutral) was detected
from SEED signals. Each model was evaluated considering accuracy metrics and standard
deviation, providing a comprehensive view of its performance.

4.1. Traditional Machine Learning Models

The results presented in Table 4 demonstrate the accuracy and standard deviation
for the Logistic Regression model applied to each of the five frequency bands of the EEG
signal, as well as considering the entire frequency spectrum of the EEG signal. The model’s
detailed results for each individual and session are shown in Tables 5–10. The same results
structure was generated for the KNN and SVM models.
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Table 4. Result (accuracy/standard deviation) of the LR model.

Model Feature δ θ α β γ All Frequencies

LR

DE 61.18/13.71 65.32/14.16 67.58/13.74 76.71/14.33 74.34/15.73 82.46/11.11
PSD 58.66/15.66 66.02/12.92 62.81/17.23 67.87/18.09 67.09/15.92 75.44/15.02

DASM 45.31/12.83 49.85/15.55 56.42/14.7 71.02/17.92 73.41/16.25 75.34/15.56
RASM 45.72/12.8 49.93/15.67 56.57/14.54 71.12/17.71 73.39/16.1 75.41/15.53
ASM 45.36/12.95 50.05/15.56 56.92/14.27 70.71/17.96 73.05/16.59 74.73/15.48

DCAU 53.77/15.15 55.22/15.72 60.98/14.92 72.19/17.31 73.86/17.74 80.69/11.72

A comparison of the performance of traditional models across different features
extracted from EEG signals for emotion detection is presented in Table 11. Six features
were analyzed as follows: PSD. DE, DASM, RASM, ASM, and DCAU, with respect to the
total frequency bands. For classification, traditional machine learning models LR, KNN,
and SVM were used.

The results presented in Figures 3–7 show that the DE (differential entropy) features
exhibited higher accuracy and lower standard deviation when compared to the traditional
PSD (power spectral density) features. For all three models—Logistic Regression (LR), K-
Nearest Neighbors (KNN), and Support Vector Machines (SVM)—the DE features produced
the highest accuracies, with respective values of 82.46%, 75.23%, and 84.44%. This result
suggests that DE features are more suitable for emotion recognition based on EEG than other
features. Another important conclusion is that the asymmetry features (DASM, RASM,
ASM) performed similarly and, in some cases, better than PSD, despite having fewer
dimensions (135 (27 pairs of electrodes × 5 bands), 135 (27 pairs of electrodes × 5 bands),
270 (54 pairs of electrodes × 5 bands), and 310 (62 electrodes × 5 bands), respectively). These
results suggest that the brain processing related to positive, neutral, and negative emotions
exhibits asymmetrical characteristics.

Figure 3. Results (accuracy/standard deviation) of all models described for frequency θ.
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Figure 4. Results (accuracy/standard deviation) of all models described for frequency α.

Figure 5. Results (accuracy/standard deviation) of all models described for frequency β.
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Figure 6. Results (accuracy/standard deviation) of all models described for frequency γ.

Figure 7. Results (accuracy/standard deviation) of all models described for all frequencies.
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Table 5. Detailed accuracy by individual/session in the LR model—feature DE.

Feature Subject Session δ θ α β γ All Frequencies

DE

1
1 56.58 85.19 82.15 88.22 82.15 95.3

2 60.84 71.97 51.73 63.08 73.55 79.55

3 45.66 69.44 53.61 61.2 56 70.09

2
1 79.99 19.58 35.84 45.74 55.42 79.48

2 73.99 57.73 68.64 65.03 65.61 91.84

3 59.47 65.97 81.65 52.89 51.23 61.13

3
1 67.92 52.96 63.37 78.83 68.28 89.88

2 46.68 70.45 64.96 64.02 73.84 80.27

3 63.58 74.49 90.39 91.76 87.43 97.18

4
1 57.37 57.88 75.43 71.97 65.1 71.46

2 59.03 56.58 59.03 58.38 63.73 68.5

3 61.71 78.11 71.68 55.64 67.05 74.06

5
1 67.27 88.15 61.56 55.06 37.14 70.74

2 58.89 74.35 71.6 90.68 77.02 90.39

3 67.12 71.97 61.78 72.83 55.71 75.14

6
1 82.88 86.27 88.51 91.11 84.75 99.64

2 46.32 71.6 75.29 82.73 84.1 78.03

3 51.81 69.58 70.95 80.27 77.38 80.78

7
1 52.1 80.71 77.67 86.85 64.31 84.03

2 26.81 65.68 64.02 100 99.21 99.78

3 51.95 52.17 72.04 65.82 45.88 69.87

8
1 60.55 48.55 65.17 79.41 77.24 77.31

2 42.27 64.02 69.58 87.21 57.44 89.02

3 69.65 50.87 84.03 97.54 68.28 96.46

9
1 78.83 65.46 54.91 77.96 97.4 92.77

2 58.96 71.39 84.25 95.95 83.16 87.86

3 55.92 53.83 62.5 61.56 71.97 67.99

10
1 57.3 56.36 60.77 69.15 77.46 66.62

2 69.94 34.9 41.55 66.69 68.35 70.16

3 52.17 48.27 54.7 76.59 78.11 81.65

11
1 48.99 65.75 79.62 64.52 76.23 70.59

2 54.84 58.16 60.26 72.47 74.78 72.47

3 77.82 48.63 84.68 85.69 86.2 96.03

12
1 85.98 94.44 61.42 74.57 86.2 92.2

2 29.91 49.78 54.48 62.07 56.07 73.27

3 64.16 62.21 77.17 89.81 96.17 85.91

13
1 59.75 63.87 43.06 73.92 86.05 84.39

2 43.28 71.89 57.88 93.71 93.21 88.08

3 69.65 86.49 55.49 87.93 83.74 80.85

14
1 85.19 72.47 60.48 86.78 81.21 83.67

2 64.52 70.59 62.36 72.47 68.42 79.84

3 52.1 64.23 61.27 63.22 44.15 66.33

15
1 70.23 72.83 91.33 93.06 98.7 100

2 80.85 70.66 72.11 100 100 100

3 82.44 73.05 100 97.62 100 100
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Table 6. Detailed accuracy by individual/session in the LR model—feature PSD.

Feature Subject Session δ θ α β γ All Frequencies

PSD

1
1 46.24 73.7 88.8 70.09 74.71 90.17

2 47.11 78.76 55.13 56.21 62.93 76.3

3 35.4 52.53 58.24 71.68 60.84 54.99

2
1 82.44 55.78 21.17 38.44 49.71 65.03

2 72.9 55.42 60.62 49.21 60.12 81.58

3 64.23 63.44 81.07 48.34 47.18 64.16

3
1 61.92 58.67 70.23 61.92 62.43 78.61

2 69.44 70.16 56.43 60.55 74.35 76.16

3 54.26 65.82 92.34 93.93 78.83 93.42

4
1 39.31 67.7 63.8 54.12 65.03 78.47

2 72.9 73.05 66.69 68.21 69.73 75.51

3 50.29 71.68 73.84 45.3 54.7 72.25

5
1 63.29 82.01 67.63 52.75 43.79 66.11

2 57.51 71.97 62.72 84.68 74.42 82.95

3 69.15 63.87 49.57 70.45 59.03 73.99

6
1 70.45 81.36 57.51 73.63 67.05 85.04

2 40.17 48.48 44.22 45.66 45.88 37.64

3 52.96 63.01 42.92 50.65 75.14 55.78

7
1 51.23 76.01 71.39 60.19 44.58 72.98

2 27.6 85.77 56.72 96.24 88.29 95.38

3 66.26 53.83 62.36 35.4 34.47 64.09

8
1 65.25 33.67 56.5 82.51 66.33 65.82

2 64.96 62.21 60.77 79.77 62.43 75.94

3 69.94 69.08 60.48 94.58 69.8 85.69

9
1 71.75 66.55 60.04 71.53 71.1 84.32

2 64.81 58.24 69.65 83.96 64.67 71.46

3 59.75 48.63 79.19 61.49 61.34 69.94

10
1 50.43 45.74 56.65 60.69 39.96 59.68

2 45.3 58.16 39.88 57.88 52.75 43.86

3 63.73 55.49 26.81 45.95 53.25 62.21

11
1 28.97 65.75 83.89 54.34 82.44 86.71

2 48.41 78.4 65.1 77.96 75.51 67.77

3 63.44 65.61 94.08 91.26 86.2 98.77

12
1 86.78 94.44 54.55 75.72 71.24 97.54

2 25.79 35.04 40.68 28.47 46.6 42.2

3 38.73 69.94 41.47 75.29 88.44 70.52

13
1 70.81 54.12 53.83 64.02 86.27 87.21

2 41.47 66.11 52.75 81.07 84.1 80.06

3 59.83 78.83 57.08 84.47 67.12 77.96

14
1 60.33 68.93 51.01 73.27 79.55 77.89

2 54.19 83.45 67.05 79.55 62.64 74.57

3 53.97 70.09 70.38 52.46 57.66 74.28

15
1 86.78 71.89 91.69 91.76 97.62 100

2 89.45 86.71 89.74 100 100 100

3 79.84 70.66 100 98.48 98.63 100
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Table 7. Detailed accuracy by individual/session in the LR model—feature DASM.

Feature Subject Session δ θ α β γ All Frequencies

DASM

1
1 59.97 49.71 68.06 86.42 96.1 96.82

2 40.25 73.34 32.23 63.66 57.66 73.48

3 46.82 52.46 36.13 47.47 56.43 72.04

2
1 34.32 27.24 47.04 65.46 68.35 75.29

2 46.82 24.86 42.85 76.16 59.54 74.78

3 52.89 23.55 61.92 41.91 47.33 62.57

3
1 50.72 45.74 54.34 52.82 58.82 66.76

2 75.94 61.34 32.37 47.62 64.67 64.88

3 56.5 51.3 56.5 78.03 75.07 96.32

4
1 41.4 50.94 65.75 69 69.29 68.71

2 46.24 25.72 43.57 57.37 59.61 46.6

3 68.35 32.95 63.29 42.2 57.95 56.58

5
1 32.59 63.87 35.69 41.62 29.7 45.01

2 51.73 64.74 56.21 50.87 74.13 69.94

3 49.42 32.51 35.62 40.03 52.96 57.01

6
1 28.76 39.52 64.38 97.54 88.15 97.4

2 17.77 55.78 59.39 65.39 72.04 61.71

3 32.8 71.6 66.26 84.68 80.13 78.32

7
1 45.38 70.81 72.69 74.64 78.68 84.32

2 31.65 63.58 75.22 94.15 96.6 96.89

3 40.46 37.36 66.26 50.79 50.94 71.03

8
1 59.25 17.2 32.51 77.6 84.83 63.95

2 48.41 55.64 48.34 100 72.83 91.33

3 35.4 52.96 56.65 65.39 93.64 77.17

9
1 62.43 66.62 53.25 75.29 68.5 74.13

2 25.14 62.86 71.89 85.69 87.79 87.14

3 53.32 46.68 72.98 48.55 68.64 68.06

10
1 53.03 48.41 78.47 71.6 66.62 59.1

2 56.21 35.19 49.93 61.71 78.68 75.94

3 52.82 38.58 39.81 71.97 76.81 73.41

11
1 47.9 35.91 82.37 77.53 85.12 90.61

2 15.97 42.34 52.38 73.84 86.49 60.62

3 58.02 32.15 84.47 97.76 89.81 93.42

12
1 39.6 59.47 65.46 76.23 85.98 89.88

2 40.17 27.6 50.94 48.7 39.23 40.03

3 63.73 53.25 45.66 92.34 99.35 99.06

13
1 38.58 74.78 50.51 79.48 91.98 92.63

2 32.01 52.1 67.92 92.92 72.83 69.73

3 53.97 57.73 52.1 86.85 91.47 77.38

14
1 44 61.05 49.13 69.29 75.72 72.83

2 59.68 77.38 50.14 77.38 75.43 74.78

3 41.62 57.08 56.65 62.07 58.82 57.88

15
1 29.48 44.44 40.46 88.29 86.99 91.4

2 51.3 72.54 75.36 92.2 74.64 96.32

3 44.36 56.14 82.44 100 96.32 100
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Table 8. Detailed accuracy by individual/session in the LR model—feature RASM.

Feature Subject Session δ θ α β γ All Frequencies

RASM

1
1 65.46 52.75 67.34 85.4 95.95 97.25

2 38.15 73.92 32.37 63.8 57.88 73.41

3 46.24 51.66 35.84 46.1 57.51 72.69

2
1 32.37 26.45 46.1 65.03 68.57 76.73

2 47.62 26.66 40.97 76.01 57.95 73.05

3 54.26 26.08 61.56 39.09 46.17 62.57

3
1 51.37 40.17 51.73 50.07 56.43 63.22

2 74.78 60.4 33.53 49.21 68.86 66.84

3 58.96 49.42 55.71 78.68 73.84 96.32

4
1 39.38 59.75 63.01 67.41 64.81 67.49

2 44.94 24.78 51.45 56.94 62.21 50.29

3 62.79 30.49 63.08 40.1 55.27 55.2

5
1 36.05 62.5 34.18 40.75 26.16 44.08

2 52.1 58.31 55.92 52.46 73.7 69.73

3 53.03 30.85 31.79 41.62 56.79 55.56

6
1 25.72 37.14 69.65 98.05 86.63 98.12

2 19.15 57.08 59.32 64.31 64.88 60.77

3 27.6 75.07 67.27 84.97 82.37 77.89

7
1 43.5 69.51 75.29 77.24 77.67 83.89

2 38.73 65.53 75.43 94.15 96.53 96.82

3 38.87 35.69 64.09 51.95 50.94 72.47

8
1 57.95 19.51 30.56 80.27 85.91 64.81

2 50.29 52.67 48.7 99.49 77.1 91.69

3 35.98 48.41 57.01 65.53 93.57 77.1

9
1 61.34 67.99 53.18 73.63 70.01 74.57

2 24.57 57.95 70.81 84.61 87.64 86.49

3 48.05 51.01 58.02 49.28 68.14 66.04

10
1 51.81 48.55 82.66 69.94 64.52 58.82

2 59.03 38.95 52.53 63.22 79.12 77.1

3 51.01 38.95 41.47 69.44 75.58 72.11

11
1 51.59 36.71 81 77.24 86.49 90.46

2 14.67 43.06 54.19 73.48 86.34 61.99

3 55.06 32.08 83.67 97.62 90.39 92.56

12
1 35.69 59.54 64.88 76.95 85.84 89.45

2 39.31 27.67 48.63 48.84 43.64 40.03

3 57.51 51.3 43.86 92.34 100 99.13

13
1 42.12 72.76 48.92 79.77 92.05 91.76

2 34.18 50.87 68.86 92.99 73.84 70.66

3 50.36 58.45 45.09 87.07 92.49 77.89

14
1 45.45 60.48 50.79 68.93 75.58 71.32

2 62.07 78.03 49.71 78.25 72.18 77.17

3 40.82 62.79 55.71 61.71 62.86 57.15

15
1 25.58 45.81 51.16 88.37 89.31 91.18

2 47.76 69.73 79.41 93.64 74.28 96.53

3 45.52 55.85 82.59 100 95.59 100
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Table 9. Detailed accuracy by individual/session in the LR model—feature ASM.

Feature Subject Session δ θ α β γ All Frequencies

ASM

1
1 66.18 49.35 67.12 86.99 97.04 97.4

2 42.63 73.12 32.8 66.26 52.67 70.09

3 44.29 53.47 35.19 53.11 56.58 77.53

2
1 37.21 26.81 44.65 66.18 67.56 76.01

2 44 30.13 45.16 74.57 58.45 71.82

3 54.91 25.14 62.21 38.01 46.97 59.9

3
1 52.02 41.84 53.25 51.66 58.96 62.57

2 74.35 59.03 31.86 44.58 66.91 59.39

3 58.53 50.65 57.66 77.96 77.02 91.47

4
1 40.68 63.08 65.68 67.63 68.21 65.9

2 46.53 27.67 45.81 57.3 62.28 51.16

3 60.19 29.12 63.08 39.45 56.86 55.71

5
1 33.74 64.09 37.07 38.01 27.67 42.77

2 52.02 64.38 52.82 49.42 65.17 68.57

3 50.72 30.27 33.82 43.14 52.67 54.62

6
1 28.25 36.78 62.86 99.21 86.27 98.41

2 19.08 55.49 59.61 69.08 70.16 57.51

3 33.09 75.87 66.33 83.67 81.21 79.05

7
1 44.65 70.23 71.97 74.78 77.67 86.13

2 32.08 60.26 74.42 95.45 94.65 95.95

3 36.05 33.53 68.71 50.43 50.94 74.57

8
1 60.84 19.65 35.77 81.07 80.71 62.79

2 50.87 57.51 50.72 98.63 83.67 91.84

3 40.25 51.88 62.72 66.18 94.29 79.84

9
1 62.43 67.7 53.68 76.81 69.8 74.57

2 22.11 62.93 74.28 84.68 87.86 86.13

3 50.65 56.72 65.68 49.86 65.32 70.52

10
1 51.95 43.93 76.81 73.63 67.63 58.09

2 59.25 38.01 52.6 61.2 80.85 79.19

3 51.88 39.81 41.33 63.44 75.29 72.76

11
1 49.28 36.78 81.58 74.06 86.49 91.62

2 15.25 42.05 53.68 74.49 86.49 61.13

3 57.51 32.95 83.45 98.7 90.25 93.79

12
1 37.93 58.53 64.74 76.23 84.68 85.77

2 39.45 26.01 52.53 44.08 30.85 41.55

3 55.85 52.46 43.57 88.29 95.16 92.7

13
1 40.61 67.27 48.19 79.12 91.69 90.32

2 32.23 49.13 71.53 93.5 77.24 70.52

3 54.05 58.74 53.47 84.47 88.44 75.43

14
1 38.22 59.97 51.73 68.79 75.79 70.66

2 60.98 79.34 50.65 79.48 73.41 75.87

3 41.76 62.93 58.02 63.22 66.26 56.65

15
1 22.4 45.38 41.76 86.92 87.28 88.22

2 52.1 68.35 80.42 88.15 74.78 96.46

3 41.98 53.83 80.56 100 97.04 100
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Table 10. Detailed accuracy by individual/session in the LR model—feature DCAU.

Feature Subject Session δ θ α β γ All Frequencies

DCAU

1
1 29.19 60.91 81.65 74.21 86.27 88.01

2 47.83 80.42 45.16 70.3 65.17 74.49

3 49.64 69.44 71.68 68.42 32.08 80.35

2
1 58.16 28.18 35.4 58.82 71.39 75.29

2 64.16 42.05 57.95 56.72 69.08 75.79

3 47.47 60.26 65.75 57.08 44.08 68.57

3
1 52.31 49.35 55.13 55.92 61.85 81.43

2 38.37 78.97 56.79 68.21 56.58 79.48

3 71.03 32.73 48.7 86.34 71.82 93.79

4
1 72.04 20.01 54.05 48.41 75.29 66.33

2 65.39 40.75 49.78 53.11 72.11 72.18

3 60.26 54.05 60.84 66.26 70.66 73.84

5
1 58.45 57.08 41.04 35.48 39.96 56.79

2 57.51 56.07 49.49 41.33 81.5 88.51

3 66.55 50 24.71 52.96 26.08 50.36

6
1 63.95 82.59 91.11 77.89 72.4 97.98

2 41.98 57.23 57.73 85.98 89.16 82.66

3 49.28 67.63 62.64 71.75 71.53 84.9

7
1 42.77 56.65 56.94 46.03 60.84 61.78

2 29.77 70.01 56.94 98.84 95.66 98.19

3 25.43 34.68 61.49 52.31 55.13 68.57

8
1 44.8 56.14 69.29 96.97 75.22 79.48

2 35.77 70.45 71.53 100 88.51 93.57

3 52.75 65.9 43.35 96.39 85.91 88.37

9
1 75.72 45.01 40.97 73.48 92.56 90.61

2 47.9 55.64 73.7 90.25 95.3 74.93

3 66.26 44.36 69.58 51.08 51.01 65.53

10
1 31.07 82.3 56.14 72.47 71.24 69.36

2 77.89 35.33 58.09 68.06 82.01 80.64

3 27.6 43.93 54.12 56.5 67.63 78.4

11
1 62.79 65.17 84.9 71.75 78.18 77.53

2 36.34 45.52 79.41 89.38 88.73 84.32

3 71.39 34.1 92.34 93.42 86.49 97.18

12
1 74.13 75.36 76.52 80.78 80.49 88.51

2 35.26 45.59 51.3 59.68 65.61 71.39

3 44.94 76.81 77.38 91.76 92.41 89.6

13
1 64.02 82.08 36.27 79.91 90.9 81.94

2 42.92 59.83 64.81 79.99 86.34 85.62

3 68.71 59.32 60.98 88.08 93.57 96.46

14
1 84.32 42.27 51.3 80.64 94.36 81.94

2 51.66 56.36 59.03 65.53 50.29 90.03

3 42.41 48.19 74.49 65.46 59.75 64.31

15
1 55.56 32.3 59.47 71.53 90.61 83.74

2 64.67 55.78 79.99 100 92.05 98.48

3 69.44 58.31 73.99 98.92 95.95 100
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Table 11. Results (accuracy/standard deviation) of the LR, KNN, and SVM models.

Model Feature δ θ α β γ All Frequencies

LR

DE 61.18/13.71 65.32/14.16 67.58/13.74 76.71/14.33 74.34/15.73 82.46/11.11
PSD 58.66/15.66 66.02/12.92 62.81/17.23 67.87/18.09 67.09/15.92 75.44/15.02

DASM 45.31/12.83 49.85/15.55 56.42/14.7 71.02/17.92 73.41/16.25 75.34/15.56
RASM 45.72/12.8 49.93/15.67 56.57/14.54 71.12/17.71 73.39/16.1 75.41/15.53
ASM 45.36/12.95 50.05/15.56 56.92/14.27 70.71/17.96 73.05/16.59 74.73/15.48

DCAU 53.77/15.15 55.22/15.72 60.98/14.92 72.19/17.31 73.86/17.74 80.69/11.72

KNN

DE 55.66/13.09 58.41/13.19 60.24/16.26 69.65/15.44 70.08/16.29 75.23/13.37
PSD 52.9/14.64 60.84/14.77 56.63/16.06 62.57/16.92 61.56/20.8 69.14/16.86

DASM 43.95/11.7 43.09/13.37 49.42/15.38 64.03/17.66 67.11/16.14 66.24/17.53
RASM 44.43/11.41 43.41/13.27 49.42/15.8 64.04/17.96 67.05/16.25 65.94/17.35
ASM 44.09/11.43 43.1/12.99 49.26/15.33 63.84/18.09 67.1/15.57 66.16/17.09

DCAU 50.27/11.77 49.5/10.38 53.6/11.18 67.8/15.09 68.88/16.44 72.84/12.75

SVM

DE 63.01/12.89 69.61/13.78 71.53/14.22 79.82/13.71 78.25/15.01 84.44/11.58
PSD 61.91/14.1 69.43/12.41 66.33/16.42 71.04/17.01 71.96/15.02 77.99/13.91

DASM 48.99/12.89 53.49/14.54 61.21/14.96 74.48/17.64 77.11/15.83 76.88/14.46
RASM 49.83/12.83 53.53/14.9 61.95/15.02 73.87/17.67 77.22/15.9 76.8/14.44
ASM 49.09/13.04 53.76/15.03 61.48/14.58 73.44/17.71 76.17/16.07 76.45/14.37

DCAU 57.49/15.75 60.16/14.62 64.77/14.3 74.9/16.34 77.67/16.85 81.43/11.62

These results suggest that features such as DE and asymmetry features may be more
relevant for emotion detection in EEG signals than traditional features like PSD. Addition-
ally, the use of smoothing algorithms and the choice of the proper classifier can significantly
impact the accuracy of emotion recognition.

4.2. Deep Learning Networks

The results in Table 12 indicate that the DNN classifier outperformed the SVM classifier,
achieving an emotion recognition accuracy of 85.22%. Among the four evaluated classifiers,
DNN proved to be the most effective for emotion recognition based on EEG. However, the
processing time was a challenge due to the need to evaluate the best hyperparameters for
the model. For each individual/session, 20 learning rates were evaluated, with an average
processing time of 45 min for each rate, totaling 15 individuals × 3 sessions × 20 learning
rates × 45 min, totaling approximately 28 h of processing. A significant advantage of the
DGCNN model lies in its significantly reduced processing time when compared to the
DNN model. While the DNN model requires an extensive training period, the DGCNN
model achieves superior results and better accuracy in a considerably shorter time, ranging
from 3 to 5 h. This efficiency in processing time enhances the practicality and feasibility of
the model.

Regarding performance in each frequency band, β and γ indicate decreased activities
for positive, neutral, and negative emotions. This result suggests that the spectral character-
istics associated with these frequency bands are correlated with emotional expression and
vary according to emotional state. This observation is consistent with the literature [12],
which suggests that different emotional states may be reflected in distinct patterns of brain
activity in different frequency bands.

For the DGCNN model, the experimental results presented in Table 12 demonstrate
that the proposed method achieves better recognition performance than previous methods.
The average recognition accuracy reached 89.97% for the subject-dependent experiment
due to the following key points:

• The use of a non-linear neural network like DGCNN makes it more effective in learning
non-linear discriminative features.

• The graph representation of DGCNN provides a useful way to characterize the intrinsic
relationships between various EEG channels, which is advantageous for extracting
the most discriminative features for the emotion recognition task.
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• The DGCNN model adaptively learns the intrinsic relationships of EEG channels by
optimizing the adjacency matrix W.

Table 12. Results (accuracy/standard deviation) of the DNN and DGCNN models.

Model Feature δ θ α β γ All Frequencies

DNN

DE 73.35/10.94 74.52/8.38 75.32/12.61 80.47/13.51 83.34/10.13 85.22/9.51
PSD 66.97/12.13 75.00/9.45 71.05/12.43 76.99/13.41 78.94/12.4 80.56/12.35

DASM 57.01/7.23 61.91/10.56 67.82/11.67 79.01/13.57 81.85/12.17 79.59/12.15
RASM 56.68/9.05 60.81/11.02 66.89/13.58 79.2/13.62 81.73/12.16 79.08/12.25
ASM 55.33/8.25 59.97/10.46 66.96/11.82 78.35/13 80.14/12.38 81.19/11.5

DCAU 70.07/6.89 68.39/11.6 72.42/9.54 80.94/11.63 83.06/10.74 84.71/9.82

DGCNN

DE 74.81/8.41 69.81/11.6 71.62/13.71 83.83/9.4 83.62/10.76 89.97/5.57
PSD 70.25/13.41 69.63/8.63 65.26/10.99 71.67/15.5 75.87/18.33 79.39/15.08

DASM 60.47/9.53 63.23/8.72 63.15/11.68 81.81/11.91 84.73/8.72 85.86/7.41
RASM 60.14/10.36 62.17/10.09 63.01/11.11 81.92/10.26 84.53/9.29 84.82/7.79
ASM 62.69/8.18 61.00/9.29 62.20/11.82 82.19/11.74 83.68/10.48 85.46/9.43

DCAU 71.18/10.85 67.69/10.12 67.08/8.96 81.98/9.72 82.20/9.22 89.36/8.63

It is essential to highlight that the diagonal elements of the adjacency matrix indi-
cate the contributions of EEG channels to emotion recognition. Therefore, the adjacency
matrix can provide a way to identify which EEG channels have a more significant con-
tribution to emotion recognition, which is advantageous for further improving emotion
recognition performance.

Although the proposed DGCNN method has proven effective in emotion recognition
from EEG, it is essential to note that the EEG databases used in the experiments are still
relatively small in data volume. This may limit the use of more powerful deep neural
network models and thus may restrict further improvements in the performance of this
method. Therefore, it is desirable to have larger-scale EEG databases to address this
challenge, which also becomes an important task for future research.

The performance of the five models is summarized in Table 13. Notably, the DGCNN
model outperformed the others across all analyzed frequencies, underscoring its superiority.
This result is particularly significant as it demonstrates the effectiveness of the graph-based
model in five out of six analyzed attributes. However, it is worth noting that the DNN
model showed higher accuracy only in the Power Spectral Density (PSD). This attribute,
which captures the energy distribution across various frequencies in the EEG signal, poses a
unique challenge due to its frequency distribution. Our analysis suggests that the inclusion
of electrode topology mapping, achieved through the adjacency matrix in graphs, may not
necessarily improve accuracy for this specific attribute.

As previously observed in this study through band analysis for traditional Machine
Learning models, the β and γ bands are particularly relevant in identifying emotional states.
Analyzing the β band, the DGCNN model’s superiority again stands out, as demonstrated
in Figure 5. The DGCNN’s ability to handle the complexity of EEG patterns in this specific
range results in a more precise interpretation of emotional responses. This consistent
performance pattern highlights the model’s robustness in various emotional contexts.
The Figure related to the γ band also confirms the consistency of the DGCNN model in
presenting superior performance. Its ability to capture detailed information and nuances in
EEG patterns in this frequency range underscores the crucial role of DGCNN in analyzing
emotions in more complex neurophysiological contexts.

In the evaluation of the δ, θ, and α bands, presented in Figures 3, 4 and 8, respectively,
it is evident that the DGCNN model also consistently exhibits superior accuracy, indicating
its effectiveness in identifying patterns in these specific frequency ranges. However, it is
crucial to note that, despite the lower accuracy compared to other bands, this decrease
does not necessarily reflect a limitation of the model but rather an intrinsic characteristic
of the bands themselves. The lower accuracy in these ranges suggests that δ, θ, and α
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may be less expressive for detecting positive, negative, and neutral emotions than other
frequency bands. This underscores the importance of a contextualized interpretation of
performance metrics, recognizing that different bands may play varied roles in encoding
complex emotional responses. This individual analysis of the different frequency bands
reinforces the reliability and overall effectiveness of the DGCNN model across all bands,
consolidating its position as a robust choice for emotion classification in EEG signals.

Table 13. Results (accuracy/standard deviation) of all models described by feature.

Feature Model δ θ α β γ All Frequencies

DE

LR 61.18/13.71 65.32/14.16 67.58/13.74 76.71/14.33 74.34/15.73 82.46/11.11
KNN 55.66/13.09 58.41/13.19 60.24/16.26 69.65/15.44 70.08/16.29 75.23/13.37
SVM 63.01/12.89 69.61/13.78 71.53/14.22 79.82/13.71 78.25/15.01 84.44/11.58
DNN 73.35/10.94 74.52/8.38 75.32/12.61 80.47/13.51 83.34/10.13 85.22/9.51

DGCNN 74.81/8.41 69.81/11.60 71.62/13.71 83.83/9.40 83.62/10.76 89.97/5.57

PSD

LR 58.66/15.66 66.02/12.92 62.81/17.23 67.87/18.09 67.09/15.92 75.44/15.02
KNN 52.9/14.64 60.84/14.77 56.63/16.06 62.57/16.92 61.56/20.8 69.14/16.86
SVM 61.91/14.1 69.43/12.41 66.33/16.42 71.04/17.01 71.96/15.02 77.99/13.91
DNN 66.97/12.13 75.00/9.45 71.05/12.43 76.99/13.41 78.94/12.40 80.56/12.35

DGCNN 70.25/13.41 69.63/8.63 65.26/10.99 71.67/15.50 75.87/18.33 79.39/15.08

DASM

LR 45.72/12.8 49.93/15.67 56.57/14.54 71.12/17.71 73.39/16.1 75.41/15.53
KNN 44.43/11.41 43.41/13.27 49.42/15.8 64.04/17.96 67.05/16.25 65.94/17.35
SVM 49.83/12.83 53.53/14.9 61.95/15.02 73.87/17.67 77.22/15.9 76.8/14.44
DNN 57.01/7.23 61.91/10.56 67.82/11.67 79.01/13.57 81.85/12.17 79.59/12.15

DGCNN 60.47/9.53 63.23/8.72 63.15/11.68 81.81/11.91 84.73/8.72 85.86/7.41

RASM

LR 45.31/12.83 49.85/15.55 56.42/14.7 71.02/17.92 73.41/16.25 75.34/15.56
KNN 43.95/11.7 43.09/13.37 49.42/15.38 64.03/17.66 67.11/16.14 66.24/17.53
SVM 48.99/12.89 53.49/14.54 61.21/14.96 74.48/17.64 77.11/15.83 76.88/14.46
DNN 56.68/9.05 60.81/11.02 66.89/13.58 79.2/13.62 81.73/12.16 79.08/12.25

DGCNN 60.14/10.36 62.17/10.09 63.01/11.11 81.92/10.26 84.53/9.29 84.82/7.79

ASM

LR 45.36/12.95 50.05/15.56 56.92/14.27 70.71/17.96 73.05/16.59 74.73/15.48
KNN 44.09/11.43 43.1/12.99 49.26/15.33 63.84/18.09 67.1/15.57 66.16/17.09
SVM 49.09/13.04 53.76/15.03 61.48/14.58 73.44/17.71 76.17/16.07 76.45/14.37
DNN 55.33/8.25 59.97/10.46 66.96/11.82 78.35/13.00 80.14/12.38 81.19/11.50

DGCNN 62.69/8.18 61.00/9.29 62.2/11.82 82.19/11.74 83.68/10.48 85.46/9.43

DCAU

LR 53.77/15.15 55.22/15.72 60.98/14.92 72.19/17.31 73.86/17.74 80.69/11.72
KNN 50.27/11.77 49.5/10.38 53.6/11.18 67.8/15.09 68.88/16.44 72.84/12.75
SVM 57.49/15.75 60.16/14.62 64.77/14.3 74.9/16.34 77.67/16.85 81.43/11.62
DNN 70.07/6.89 68.39/11.60 72.42/9.54 80.94/11.63 83.06/10.74 84.71/9.82

DGCNN 71.18/10.85 67.69/10.12 67.08/8.96 81.98/9.72 82.2/9.22 89.36/8.63

Finally, a comparison with the literature is presented in Table 14, where the SVM
and DNN models from the work of Zheng et al. [12] and DGCNN from Song et al. [38]
are highlighted. These models are particularly noteworthy as they use the same dataset
as this paper and, at the time of their publication, represented significant milestones in
emotion classification from EEG signals. Notably, when comparing the performance of the
SVM model across all features, the proposed model in this work exhibited higher accuracy.
The improved performance is attributed to the grid search optimization conducted for
each individual participant, which likely enabled the model to better capture the subject-
specific patterns in the EEG data. While the literature does not specify exactly how the
parameter tuning was conducted, this work verified margin adjustment through the C
parameter for each individual. Another notable distinction between this work and the
studies previously cited in the literature is the inclusion of the asymmetry feature (ASM) in
conjunction with DASM and RASM. While previous works focused exclusively on DASM
(differential asymmetry) and RASM (rational asymmetry) measures, the present research
seeks a more comprehensive understanding of asymmetry characteristics in the EEG context.
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Incorporating ASM adds another dimension to the evaluation, allowing for a more refined
analysis of asymmetrical characteristics in brain activity patterns. The inclusion of ASM,
in conjunction with the optimization of the SVM model for each individual, highlights the
innovative aspects of this work when compared to the existing literature.

Figure 8. Results (accuracy/standard deviation) of all models described for frequency δ.

Table 14. Comparison of results with the literature.

Feature Model δ θ α β γ All frequencies

DE

LR 61.18/13.71 65.32/14.16 67.58/13.74 76.71/14.33 74.34/15.73 82.46/11.11
KNN 55.66/13.09 58.41/13.19 60.24/16.26 69.65/15.44 70.08/16.29 75.23/13.37
SVM 63.01/12.89 69.61/13.78 71.53/14.22 79.82/13.71 78.25/15.01 84.44/11.58
SVM
[12] 60.50/14.14 60.95/10.20 66.64/14.41 80.76/11.56 79.56/11.38 83.99/9.72

DNN 73.35/10.94 74.52/8.38 75.32/12.61 80.47/13.51 83.34/10.13 85.22/9.51
DBN
[12] 64.32/12.45 60.77/10.42 64.01/15.97 78.92/12.48 79.19/14.58 86.08/8.34

DGCNN 74.81/8.41 69.81/11.60 71.62/13.71 83.83/9.40 83.62/10.76 89.97/5.57
DGCNN

[38] 74.25/11.42 71.52/5.99 74.43/12.16 83.65/10.17 85.73/10.64 90.40/8.49

PSD

LR 58.66/15.66 66.02/12.92 62.81/17.23 67.87/18.09 67.09/15.92 75.44/15.02
KNN 52.9/14.64 60.84/14.77 56.63/16.06 62.57/16.92 61.56/20.8 69.14/16.86
SVM 61.91/14.1 69.43/12.41 66.33/16.42 71.04/17.01 71.96/15.02 77.99/13.91
SVM
[12] 58.03/15.39 57.26/15.09 59.04/15.75 73.34/15.20 71.24/16.38 59.60/15.93

DNN 66.97/12.13 75.00/9.45 71.05/12.43 76.99/13.41 78.94/12.40 80.56/12.35
DBN
[12] 60.05/16.66 55.03/13.88 52.79/15.38 60.68/21.31 63.42/19.66 61.90/16.65

DGCNN 70.25/13.41 69.63/8.63 65.26/10.99 71.67/15.50 75.87/18.33 79.39/15.08
DGCNN

[38] 71.23/11.42 71.20/8.99 73.45/12.25 77.45/10.81 76.60/11.83 81.73/9.94
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Table 14. Cont.

Feature Model δ θ α β γ All frequencies

DASM

LR 45.72/12.8 49.93/15.67 56.57/14.54 71.12/17.71 73.39/16.1 75.41/15.53
KNN 44.43/11.41 43.41/13.27 49.42/15.8 64.04/17.96 67.05/16.25 65.94/17.35
SVM 49.83/12.83 53.53/14.9 61.95/15.02 73.87/17.67 77.22/15.9 76.8/14.44
SVM
[12] 48.87/10.49 53.02/12.76 59.81/14.67 75.03/15.72 73.59/16.57 72.81/16.57

DNN 57.01/7.23 61.91/10.56 67.82/11.67 79.01/13.57 81.85/12.17 79.59/12.15
DBN
[12] 48.79/9.62 51.59/13.98 54.03/17.05 69.51/15.22 70.06/18.14 72.73/15.93

DGCNN 60.47/9.53 63.23/8.72 63.15/11.68 81.81/11.91 84.73/8.72 85.86/7.41
DGCNN

[38] 55.93/9.14 56.12/7.86 64.27/12.72 73.61/14.35 73.50/16.6 78.45/11.84

RASM

LR 45.31/12.83 49.85/15.55 56.42/14.7 71.02/17.92 73.41/16.25 75.34/15.56
KNN 43.95/11.7 43.09/13.37 49.42/15.38 64.03/17.66 67.11/16.14 66.24/17.53
SVM 48.99/12.89 53.49/14.54 61.21/14.96 74.48/17.64 77.11/15.83 76.88/14.46
SVM
[12] 47.75/10.59 51.40/12.53 60.71/14.57 74.59/16.18 74.61/15.57 74.74/14.79

DNN 56.68/9.05 60.81/11.02 66.89/13.58 79.2/13.62 81.73/12.16 79.08/12.25
DBN
[12] 48.05/10.37 50.62/14.02 56.15/15.28 70.31/15.62 68.22/18.09 71.30/16.16

DGCNN 60.14/10.36 62.17/10.09 63.01/11.11 81.92/10.26 84.53/9.29 84.82/7.79
DGCNN

[38] 57.79/6.90 55.79/8.10 61.58/12.63 75.79/13.07 82.32/11.54 85.00/12.47

ASM

LR 45.36/12.95 50.05/15.56 56.92/14.27 70.71/17.96 73.05/16.59 74.73/15.48
KNN 44.09/11.43 43.1/12.99 49.26/15.33 63.84/18.09 67.1/15.57 66.16/17.09
SVM 49.09/13.04 53.76/15.03 61.48/14.58 73.44/17.71 76.17/16.07 76.45/14.37
SVM
[12] - - - - - -

DNN 55.33/8.25 59.97/10.46 66.96/11.82 78.35/13.00 80.14/12.38 81.19/11.50
DBN
[12] - - - - - -

DGCNN 62.69/8.18 61.00/9.29 62.2/11.82 82.19/11.74 83.68/10.48 85.46/9.43
DGCNN

[38] - - - - - -

DCAU

LR 53.77/15.15 55.22/15.72 60.98/14.92 72.19/17.31 73.86/17.74 80.69/11.72
KNN 50.27/11.77 49.5/10.38 53.6/11.18 67.8/15.09 68.88/16.44 72.84/12.75
SVM 57.49/15.75 60.16/14.62 64.77/14.3 74.9/16.34 77.67/16.85 81.43/11.62
SVM
[12] 55.92/14.62 57.16/10.77 61.37/15.97 75.17/15.58 76.44/15.41 77.38/11.98

DNN 70.07/6.89 68.39/11.60 72.42/9.54 80.94/11.63 83.06/10.74 84.71/9.82
DBN
[12] 54.58/12.81 56.94/12.54 57.62/13.58 70.70/16.33 72.27/16.12 77.20/14.24

DGCNN 71.18/10.85 67.69/10.12 67.08/8.96 81.98/9.72 82.2/9.22 89.36/8.63
DGCNN

[38] 63.18/13.48 62.55/7.96 67.71/10.74 78.68/10.81 80.05/13.03 81.91/10.06

The DNN model developed in this work stands out by significantly surpassing the
DNN model proposed by [12] in many features, as demonstrated in Table 15. Only in the
case of differential entropy was the proposed model not superior. This advancement can be
attributed to specific improvements implemented in the architecture of the DNN, especially
the learning rate for each individual of the model obtained through hyperparameter tuning,
highlighting the importance of refining and adapting existing models to achieve more
robust and accurate results. The surpassing of the performance of the previous DNN model
underscores the significant contribution of this study to the advancement in the field of
emotion analysis in EEG signals, promoting a deeper understanding of the capabilities and
limitations of these architectures in specific contexts.



Bioengineering 2024, 11, 782 27 of 30

The variation in the performance metrics of the DGCNN model across different fea-
tures, such as DE and PSD with lower accuracy and DASM, RASM, and DCAU with higher
accuracy, when compared to the accuracy reported in the work of Song et al. [38], can be
attributed to the inherent complexities of specific EEG signal characteristics. These features’
dynamic and nonlinear nature may influence the model’s behavior. For DE and PSD, which
capture information about energy distribution and entropy, respectively, the DGCNN’s
ability to effectively model these nuances may be related to the complexity of these rep-
resentations. This is consistent with the findings of Zhang et al. [10], who observed that
DE and PSD features are more challenging for deep learning models to capture when com-
pared to asymmetry-based features. On the other hand, in features such as DASM, RASM,
and DCAU, which reflect aspects of asymmetry and causality in the signal, the model
proposed in this work was able to leverage its architecture better to identify discriminative
patterns. It is important to note that despite variations in the results, the accuracy values
remain close to those reported in the work of Song et al. [38], indicating consistency and
validity. The convolutional layers, learning rate, and regularization parameters (weight
decay) are the main factors that justify the differences between this work and the literature,
and these discrepancies can be valuable for better understanding the nuances of EEG
signals and providing insights into the capabilities and limitations of models in different
emotional analysis contexts.

Table 15. Comparison of the DNN Model with the literature.

Feature Model δ θ α β γ All Frequencies

DE
DNN 73.35/10.94 74.52/8.38 75.32/12.61 80.47/13.51 83.34/10.13 85.22/9.51
DBN
[12] 64.32/12.45 60.77/10.42 64.01/15.97 78.92/12.48 79.19/14.58 86.08/8.34

PSD
DNN 66.97/12.13 75.00/9.45 71.05/12.43 76.99/13.41 78.94/12.40 80.56/12.35
DBN
[12] 60.05/16.66 55.03/13.88 52.79/15.38 60.68/21.31 63.42/19.66 61.90/16.65

DASM
DNN 57.01/7.23 61.91/10.56 67.82/11.67 79.01/13.57 81.85/12.17 79.59/12.15
DBN
[12] 48.79/9.62 51.59/13.98 54.03/17.05 69.51/15.22 70.06/18.14 72.73/15.93

RASM
DNN 56.68/9.05 60.81/11.02 66.89/13.58 79.2/13.62 81.73/12.16 79.08/12.25
DBN
[12] 48.05/10.37 50.62/14.02 56.15/15.28 70.31/15.62 68.22/18.09 71.30/16.16

ASM
DNN 55.33/8.25 59.97/10.46 66.96/11.82 78.35/13.00 80.14/12.38 81.19/11.50
DBN
[12] - - - - - -

DCAU
DNN 70.07/6.89 68.39/11.60 72.42/9.54 80.94/11.63 83.06/10.74 84.71/9.82
DBN
[12] 54.58/12.81 56.94/12.54 57.62/13.58 70.70/16.33 72.27/16.12 77.20/14.24

The SEED dataset, while providing a valuable resource for emotion recognition re-
search, has two key limitations. First, the SEED dataset may not fully represent the broader
population or the diverse range of emotional experiences. Its relatively small size could
limit the generalizability of the models trained on it as they may not capture the full com-
plexity and variability of human emotions. This limited representativeness could constrain
the models ability to accurately classify emotions across different demographics and con-
texts. Second, the generalization of the results may be affected by the specific nature of the
SEED dataset, which consists of Chinese audiovisual stimuli. This cultural bias could limit
the applicability of the emotion classification models to diverse populations and cultural
contexts [6]. Additionally, the choice of audiovisual stimuli in the SEED dataset may not
capture the full range of emotional experiences, introducing a stimulus bias that could
affect the models’ performance and robustness.
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Furthermore, the use of a subject-dependent approach in emotion classification re-
search with the SEED dataset, combined with its inherent limitations, introduces several
potential biases that could undermine the generalizability and robustness of the models.
The subject-dependent approach may lead to biased results as the model might memorize
specific patterns of a subject, impairing its generalization to other subjects. This overfit-
ting bias could result in the model performing well on the training subjects but failing to
generalize to new, unseen subjects.

These potential biases, stemming from both the subject-dependent approach and the
limitations of the SEED dataset, could undermine the reliability, generalizability, and real-
world applicability of emotion classification research.

5. Conclusions

This work evaluates the effectiveness of different machine learning models, ranging
from more conventional techniques to advanced deep learning approaches, in classifying
emotions using EEG signals. The study seeks to identify the best-performing models and
contribute to the evolution of the field, with the potential to positively impact society
and technology. The novelty of this research lies in its comprehensive and comparative
analysis of a wide range of machine learning and deep learning approaches, including the
innovative use of Graph Convolutional Neural Networks (GCNNs), to advance emotion
detection from EEG signals and address the gaps in the existing literature. It provides
essential insights for emotional neuroscience, significantly expanding our understanding
of the connections between brain activity and specific emotional states.

The results obtained in this study are consistent with referenced works and indicate
the feasibility and potential applicability of Deep Neural Networks for emotion analysis in
EEG signals. The analysis of different EEG signal features highlighted the significance of
appropriate feature selection for optimal model performance. Additionally, the frequency
band analysis provided a deeper understanding of EEG signal characteristics. The potential
to enhance mental health systems, enabling more accurate diagnoses and personalized
treatments, is noteworthy, Additionally, the possibility of using these models in brain–
computer interfaces can improve human–machine interactions, making it more intuitive
and efficient.

Furthermore, the results achieved through the GCNN architecture highlighted its
effectiveness and superiority over other machine learning approaches in emotion detection
from EEG. The differential entropy and differential causality attributes were the attributes
that performed best in all frequency bands for the mentioned model, achieving accuracies of
89.97% and 89.36%, respectively. The DNN model, on the other hand, presented an accuracy
of 85.22% and 84.71% for these features. Another significant result of the mentioned model
concerns the PSD attribute, in which an accuracy of 80.56% was achieved, surpassing the
GCNN model, with an accuracy of 79.39%. From evaluating these results, it is possible to
conclude that deep learning models, especially graph-based models, are viable for emotion
classification. The differential entropy and asymmetry attributes are the most suitable for
correctly classifying positive, negative, and neutral emotions.

Regarding the individually analyzed frequency bands, it is notable that accuracy
values are higher for the β and γ frequencies. In the γ frequency, the two highest accuracies
were obtained through the GCNN model when analyzing the asymmetry attributes DASM
and RASM, with values of 84.73% and 84.53%, confirming the relevance of the asymmetrical
characteristics of EEG for emotion classification. In the β frequency, the best accuracy
results were also obtained for the same model, but this time for the DE and ASM features,
with values of 83.83% and 82.19%, confirming the importance of analyzing the nonlinearities
of the EEG signal for emotion classification. Therefore, it is concluded that in addition to
analyzing the entire frequency spectrum of the EEG signal, the analysis of specific frequency
bands such as β and γ can assist in classifying emotions in EEG signals.

Given this work’s discoveries and advances, several future research directions can
be explored. Investigating different network architectures, including the combination of
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models (Ensemble), can provide insights into optimizing the performance of DGCNN
or comparing it with other deep learning models. Furthermore, exploring advanced sig-
nal processing techniques, such as adaptive filtering, can enhance the quality of features
extracted from EEG signals. Analyze the data with different methodology, such as, for ex-
ample, subject-independent, to explore attention mechanisms and SWAP. Investigating
the generalization of models to different populations and contexts is also a critical path to
ensure applicability in diverse scenarios.
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