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Abstract: Causal machine learning is an approach that combines causal inference and
machine learning to understand and utilize causal relationships in data. In current research
and applications, traditional machine learning and deep learning models always focus
on prediction and pattern recognition. In contrast, causal machine learning goes a step
further by revealing causal relationships between different variables. We explore a novel
concept called Double Machine Learning that embraces causal machine learning in this
research. The core goal is to select independent variables from a gesture identification
problem that are causally related to final gesture results. This selection allows us to
classify and analyze gestures more efficiently, thereby improving models’ performance and
interpretability. Compared to commonly used feature selection methods such as Variance
Threshold, Select From Model, Principal Component Analysis, Least Absolute Shrinkage
and Selection Operator, Artificial Neural Network, and TabNet, Double Machine Learning
methods focus more on causal relationships between variables rather than correlations.
Our research shows that variables selected using the Double Machine Learning method
perform well under different classification models, with final results significantly better than
those of traditional methods. This novel Double Machine Learning-based approach offers
researchers a valuable perspective for feature selection and model construction. It enhances
the model’s ability to uncover causal relationships within complex data. Variables with
causal significance can be more informative than those with only correlative significance,
thus improving overall prediction performance and reliability.

Keywords: leap motion controller; dynamic hand gestures identification; feature selection;
causal effect; double machine learning

1. Introduction
In recent years, with the rapid development of computer and internet technologies,

Human–Computer Interaction (HCI) technologies have received wide attention. Nowa-
days, more and more devices are becoming intelligent and capable of interacting with
humans, driving the evolution of user interaction. Traditionally, most systems relied on
keyboards, mice, and touchscreens as input devices for HCI. However, with the emer-
gence of diverse technologies such as the Internet of Things (IoT), the development of
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more human-oriented interaction methods has become particularly important. The core
of HCI technology lies in designing, implementing, and evaluating interactive interfaces
to enhance the user’s experience with computing devices. Traditional touch-based inter-
action devices, such as keyboards and touchscreens, have revealed some shortcomings.
Especially during the COVID-19 epidemic period, most of users’ concerns for health and
hygiene have increased significantly, and many prefer to perform operations without phys-
ical contact [1,2]. For example, technologies such as voice recognition and gesture control
manage to make HCI more natural and efficient. These emerging technologies can not
only meet users’ needs for convenience and security, but also provide a richer and more
immersive interaction experience.

Hands are the most frequently used part of the human body. Humans can use their
hands to make a variety of gestures and define simple combinations of gestures to perform
complex commands. Flexible, natural gestures have greater versatility than traditional
touch methods [3]. In general, gesture identification can be divided into two main categories.
The first category is computer vision-based recognition techniques, which capture hand
images through one or more cameras and utilize deep learning algorithms, such as neural
networks and convolutional neural networks, to classify gestures [4]. However, vision-
based methods require image processing to extract hand position information, making them
costly, especially for dynamic gesture identification. The second category is sensor-based
recognition techniques, such as using digital gloves and 3D depth sensors to collect and
analyze data. Although sensor-based methods have been around since the 1970s, their
practical application has been limited because they always rely on wearable devices, such
as digital gloves, for tracking and estimating the position and orientation of the hand
and fingers [5]. With the development of 3D depth sensor technology, tools like the Leap
Motion Controller (LMC) have emerged to provide a low-cost and more efficient solution
for detecting and tracking hand motion. The LMC can output data such as palm orientation,
fingertip position, bone position, and other relevant points.

With the abundance of LMC data types, the number of variables available for re-
search is increasing. Feature selection is particularly important when dealing with high-
dimensional data, as it can significantly reduce the time cost and model complexity in
the analysis process. In recent years, research on feature selection has gained attention,
with statistical and optimization-based methods such as Recursive Feature Elimination,
Chi-Square, and Genetic Algorithm commonly used to reduce data dimensionality and im-
prove the efficiency of model training [6]. Additionally, causal machine learning leverages
the strong fitting ability of machine learning and deep learning models to characterize the
positive or negative impact of individual variables on the final dependent variable outcome
by observing changes in the treatment effect value [7]. In this research, we propose a novel
feature selection method using the Double Machine Learning (DML) model. By controlling
for other variables, the DML model can assess whether there is a significant difference in
the treatment effect of a single variable on the dependent variable. This research extends the
findings of our conference paper [8]. In comparison to the original paper, we incorporate
additional feature selection methods and machine learning models for a comprehensive
comparative study. For each dataset, all feature selection methods are tuned with param-
eters similar to those used in the DML method. Consequently, this research provides a
more rigorous verification that DML is more effective for feature extraction in gesture
identification recognition problems.

The remainder of this paper is organized as follows: Section 2 reviews LMC-based
classification papers, as well as the research related to machine learning and deep learning,
and explores the application of feature selection and DML. Section 3 describes the exper-
imental environment setup, datasets, feature selection methods, and machine learning
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methods in detail. Section 4 presents the detailed experimental procedure and results.
Finally, Section 5 summarizes the research.

2. Related Works
The LMC is an advanced gesture identification device that has been the subject of many

significant research papers in the fields of gesture identification and human–computer
interaction. It is capable of outputting data such as palm orientation, fingertip position,
bone position, and other relevant points. Its high Accuracy and real-time capabilities
make it promising for a wide range of applications across several fields. Weichert et al.
analyzed the Accuracy and robustness of the LMC in detail, finding that it had minimal
deviation in both static and dynamic settings of fingertip position, especially in static
settings where deviation is minimized [9]. In the field of static gesture identification,
Marin et al. conducted a study using three feature datasets (fingertip distance, fingertip
angle, and fingertip height) collected by the LMC. They found that the Accuracy of static
gesture identification based on the LMC could reach 80% [10]. This result indicated that the
LMC had high reliability and Accuracy in static gesture identification, with the potential
to meet the needs of real-world applications in the future. The application of the LMC
in virtual reality and augmented reality has also gained significant attention. The LMC
can provide high-precision hand tracking, enabling game users to interact naturally in
virtual environments. Martins et al. evaluated the effectiveness of the LMC in a 2D gaming
environment, and found that it performed better in the collection of game items and during
combat, but not as well as traditional mouse and keyboard in character movement [11].
The LMC has also shown great potential for applications in the medical and rehabilitation
fields due to its contactless interaction characteristics. Ameur et al. defined 11 dynamic
gestures for medical image manipulation to address the need for aseptic manipulation in
healthcare, using 3D positional information as an input feature for the model [12]. This
approach not only improves the ease of operation, but also effectively reduces the risk
of cross-infection.

In terms of dataset expansion and application, researchers continue to expand and
enrich datasets to further improve the Accuracy of gesture identification. A research team
released a dataset containing more samples and richer spatial-frequency features [13], pro-
viding a valuable resource for subsequent studies and helping to enhance the performance
of gesture identification models. The LMC is able to provide detailed data on skeletal
movements. Boulahia et al. extended the existing action recognition feature set HIF3D,
and collected a new dataset containing 46 joints (in 3D coordinates) using the LMC [14].
These dataset includes information on the 3D coordinates of 23 joints of each hand, offering
researchers more detailed skeleton data and improving the representation of whole-body
gestures. In terms of skeleton gesture identification, Li et al. proposed a skeleton-based
gesture identification enhancement method [15]. Their results showed that the Accuracy of
static gesture identification was as high as 94%, while the dynamic gesture identification
rate, combined with the initial FC strategy, exceeded 90%, which provided new ideas
and directions for the development of gesture identification technology. More summaries
of gesture datasets can be found in Chakravarthi et al. These datasets covered various
types of gestures and specific application scenarios, providing meaningful references for
researchers [16].

With the increasing richness of LMC data types, the number of variables available
for categorization has gradually increased. Feature engineering is particularly important
when dealing with high-dimensional data, as it can significantly reduce the time cost and
complexity of the classification process. In recent years, research on feature engineering has
become popular, and many statistically based methods have been widely used for feature
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selection, such as Recursive Feature Elimination, Chi-Square, and Genetic Algorithm [6].
These methods improve the efficiency of model training by reducing data dimensionality.
Among them, Recursive Feature Elimination is a commonly used method that selects
features by recursively constructing the model and eliminating the least important features.
The Chi-Square test evaluates the correlation between categorical variables to select the
most relevant features. The Genetic Algorithm is an optimization algorithm based on the
principles of natural selection and genetics, which selects the optimal subset of features
by simulating the process of biological evolution [17]. In addition to the problem of data
complexity, the complexity of machine learning models is increasing as models continue to
evolve, making the interpretability of models increasingly important in different research
areas [18]. Interpretable machine learning aims to make the decision-making process of
a model transparent and help users understand the model’s behavior and the basis of
its decisions. Shapley Additive Explanations (SHAP) is a commonly used interpretable
method in machine learning modeling, explaining the model’s decisions by calculating
the value of each feature’s contribution to the model’s output [19]. However, in machine
learning tasks, the model’s understanding of the relationship between independent and
dependent variables during training is based on correlation instead of causality. It means
the model tends to focus more on the correlation between dependent and independent
variables when identifying variable importance [20]. Causal machine learning, on the other
hand, combines the strengths of causal inference and machine learning to improve the
interpretability and predictive power of the model by modeling the causal relationships
between variables. It utilizes the strong fit of machine learning models to describe the
positive or negative impact of individual variables on the outcome of the final dependent
variable through changes in treatment effect values [7]. This approach not only improves
the predictive Accuracy of the model, but also provides deeper insights to help under-
stand the causal relationships between variables. Currently, causal uplift modeling has
applications in business, healthcare, and other industries [21]. Among these, Wijaya et al.
quantified the effect of different dependent variables on employee turnover classification
using uplift modeling from a causal inference perspective [22]. One research further ex-
plored this research methodology and demonstrated the application of the uplift modeling
to interpretable machine learning [23]. The uplift modeling not only provides finer causal
inference at the individual level, but also complements the SHAP diagram to offer a more
comprehensive explanation of the variables.

3. Materials and Methods
This section explores the data collection process, the construction of variables, the meth-

ods of feature selection, and the construction of machine learning models in detail. First,
we introduce the specific steps of data collection, the environment, and the variables in-
volved to ensure the completeness and Accuracy of the data. Next, we provide an in-depth
introduction to the DML-based novel feature extraction method used in this research,
describing its principles and application scenarios, as well as the feature selection method
used for comparative study with DML. Finally, we outline several major machine learning
classification methods used in the experiments, the evaluation metrics, and discuss their
applicability and performance in this research.

3.1. Gesture Datasets Collection

The LMC from Ultraleap is an optical hand-tracking module that captures the move-
ment of users’ hands and fingers, allowing them to interact naturally with digital content.
The LMC includes three IR LEDs for scene illumination and two CMOS cameras that
capture images at frame rates ranging from 50 to 200 frames per second. It can track hands
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and fingers within a 3D interactive zone extending up to 60 cm or more from the device,
with a typical field of view of 140 × 120◦ [24].

We collected all datasets in a controlled indoor environment to ensure consistency
of experimental conditions and reliability of data. The LMC device was placed on a flat
tabletop in front of a whiteboard. Depending on the extent of the data collected by the
LMC, we drew a 3 × 3 square grid on the whiteboard with a marker pen, with each grid
measuring 10 × 10 cm. All experimental participants made gestures 20–30 cm above the
LMC device to ensure it could capture the complete gesture movement trajectory. The
LMC was connected to a laptop computer via a USB cable, and a researcher monitored and
controlled the entire data collection process to ensure the Accuracy and integrity of the
data. During the experiment, all participants were asked to place their hands on the LMC
and point their fingers at the whiteboard as the initial hand position. The data collection
process is shown in Figure 1.

Figure 1. Initial step of collecting data.

A total of 12 participants, including 7 females and 5 males, were invited to the experi-
ment. To ensure diversity and representability of the data, the participants were instructed
to perform a series of predefined hand movements. The experimental design consisted of
10 different movements, with each participant repeating each movement 10 times. Specific
movement types and descriptions are detailed in Figure 2. The entire experimental process
was conducted in strict accordance with predefined steps to ensure the repeatable and
scientific validity of the data. The researcher monitored the participants’ movements closely
during the data collection process to ensure that each movement was recorded accurately.
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Figure 2. Description of hand gestures.

3.2. Structure of Gesture Datasets

To process time series motion data collected by LMC, we propose using the temporal
windowing technique to associate several frames. Thus, we converted the hand motion
frame data into a feature set based on the number of time windows. While recording
the hand gesture data for all participants, we notice that the time windows significantly
affected the classification. Considering the calculation of standard deviation, the number of
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time windows is limited to 35. By comparing the data with window numbers of 5, 10, 15,
20, 25, 30, and 35, we find that when the number of windows is 15, the initial computed
classification Accuracies are better and models run faster. Specifically, we calculate the
arithmetic mean and standard deviation for each time window to construct a unique set
of features. Suppose the feature set is Wi = { f1, f2, f3, . . . , fm−1, fm}, where m denotes the
number of features. All location data in the feature set is normalized to the range of [−1, 1].
In this research, 15 time windows are used, i.e., i = 15. All variables are combined as
{W1, W2, . . . , W14, W15}.

We utilize three types of feature sets: single finger features, two finger features,
and bone finger features. To provide information about the direction of the action, we add
finger direction, palm direction, and palm normal vector to all feature sets. The single finger
feature set focuses on the 3D spatial features of the hand and fingers. The variables involved
in the single finger features are hand position, hand direction and normal, fingertips
position, and fingertips direction. We divide them into two datasets: single finger feature
mean (fset_mean), which contains the mean of the variables, and single finger feature
standard deviation (fset_std), which contains the standard deviation of the variables.
The formulas for calculating the mean and standard deviation are shown below:

Mean(V) =
1
n

n

∑
i=1

Vi (1)

Stdev(V) =

√
1
n

n

∑
i=1

(Vi − Mean(V)) (2)

In the two finger feature set (fset_dist), we include fingertip palm distances, adjacent
fingertip distances, hand direction and normal, and fingertips direction. These features help
evaluate the performance of distance-based gesture identification, especially in complex
gesture identification tasks. The bone finger feature set (fset_bones_mean) contains the
positions of the distal and middle phalanges as 3D spatial features of the bone finger.
Specific variables include hand position, hand direction and normal, fingertips position,
fingertips direction, distal phalanges position, and intermediate phalanges position. These
features provide more detailed skeletal information for gesture identification and help
improve the Accuracy of identification. The main features involved in the four datasets are
shown in Table 1.

Table 1. Main features of different datasets.

Dataset Main Features Description

fset_mean

m_{figure}_pos_{position}_{i}

the mean value of figure (thumb, index,
middle, ring, pinky) position of (X axis, Y axis,
Z axis) in 3D coordinated system with window
i (0, 1, 2, 3, . . . , 14, 15)

m_{figure}_dir_{position}_{i}

the mean value of figure (thumb, index,
middle, ring, pinky) direction of (X axis, Y axis,
Z axis) in 3D coordinated system with window
i (0, 1, 2, 3, . . . , 14, 15)

fset_std

std_{figure}_pos_{position}_{i}

the standard deviation value of figure (thumb,
index, middle, ring, pinky) position of (X axis,
Y axis, Z axis) in 3D coordinated system with
window i (0, 1, 2, 3, . . . , 14, 15)

std_{figure}_dir_{position}_{i}

the standard deviation value of figure (thumb,
index, middle, ring, pinky) direction of (X axis,
Y axis, Z axis) in 3D coordinated system with
window i (0, 1, 2, 3, . . . , 14, 15)
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Table 1. Cont.

Dataset Main Features Description

fset_dist

dist_{figure}_{i}
the distance value of figure (thumb, index,
middle, ring, pinky) to palm in 3D coordinated
system with window i (0, 1, 2, 3, . . . , 14, 15)

dist_{figures}_{i}

the distance value between two figures (thumb
and index, index and middle, middle and ring,
ring and pinky) in 3D coordinated system with
window i (0, 1, 2, 3, . . . , 14, 15)

m_{figure}_dir_{position}_{i}

the mean value of figure (thumb, index,
middle, ring, pinky) direction of (X axis, Y axis,
Z axis) in 3D coordinated system with window
i (0, 1, 2, 3, . . . , 14, 15)

fset_bones_mean m_{figure}_{bones}_{position}_{i}

the mean value of figure (thumb, index,
middle, ring, pinky) with bones variable
(fingertips Position, fingertips direction, distal
phalanges position, intermediate phalanges
position) of position (X axis, Y axis, Z axis) in
3D coordinated system with window
i (0, 1, 2, 3, . . . , 14, 15)

3.3. Feature Selection Methods

In the information age, feature selection plays a crucial role in the data preprocessing
process before machine learning and data mining. By identifying and selecting the most
informative features, feature selection not only improves the performance of the model sig-
nificantly, but also reduces computational complexity and the risk of overfitting. In practice,
there are various feature selection methods, including Variance Threshold (VAR), Select
From Model (SFM), Principal Component Analysis (PCA), and Least Absolute Shrinkage
and Selection Operator (LASSO), while current deep learning-based selection methods
include Artificial Neural Network (ANN) and TabNet.

The VAR method is a simple but effective approach for feature selection. It measures
the dispersion of features by calculating the variance value of each feature. The smaller the
variance, the less information the feature provides. Therefore, we can set a variance thresh-
old and eliminate features that fall below this threshold to achieve feature selection [25].
The advantage of this method is simplicity and suitability for initial feature screening,
but the disadvantage is that it fails to consider the correlation between features. As another
traditional method, SFM is a more complex and precise feature selection. It evaluates the
importance of features by using machine learning to analyze the parameters or variable
importance of the model to decide which features should be retained. Among these, Ran-
dom Forest is often used as a machine learning model for selecting variables. The Random
Forest model evaluates the importance of each feature by constructing multiple decision
trees and combining their predictions. This approach considers both the individual con-
tributions of the features and the interactions between them, making it very effective in
practical applications. PCA is a feature selection technique that differs from the previous
methods. The core of PCA is to compress feature dimensions rather than selecting features.
PCA projects high-dimensional data into a low-dimensional space, preserving the main
information of all features and simplifying the data structure. Specifically, PCA transforms
the original features into a new set of uncorrelated features through linear transformation,
called principal components. These principal components are ranked according to the
magnitude of their explained variance, and the first few principal components usually
contain most of the data’s information, allowing them to replace the original features [26].
LASSO is a feature selection method commonly used in statistics. LASSO introduces an
L1 regularization term in the regression model, causing some regression coefficients to
zero, thereby excluding variables with zero coefficients. This method not only improves
the predictive performance of the model, but also enhances its interpretability. Due to its
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simplicity and efficiency, LASSO is widely used in machine learning research, particularly
in the medical field [27,28].

As deep learning becomes popular, this research employs the classical ANN model
for feature selection. The principle is to select features based on the neuron weights of
the ANN. By analyzing the weights of neurons in each layer at the end of ANN training,
we identify and select the most important features for the model output. The core idea
of this method is to leverage the adaptive learning ability of neural networks to adjust
weights through the backward propagation algorithm, thereby automatically screening the
features that have the most impact on prediction results. Some papers have examined the
effectiveness of ANN in feature selection and compared it with different feature selection
methods [29,30]. Similarly, there is a feature selection method based on the neuron weights
of TabNet, which achieves feature selection through the Sequential Attention Mechanism.
This method is currently applied in various fields [31,32].

In traditional causal learning for the effect of treatment, researchers often focus on the
effect of heterogeneity by dividing the sample into control and experimental groups and
calculating the significant difference in effect when other variables are similar. The ran-
domized controlled trial is recognized as the gold standard for this purpose [33]. However,
due to ethical considerations, especially in medical area, researchers often need to cal-
culate the treatment effect based on existing data sets. Some well-known methods such
as Differences-in-Differences and Propensity Score Matching have been used in many
aspects [34,35]. Now, with the development of machine learning, more causal models have
been invented and used. For discrete datasets, S Learner, T Learner, and X Learner can
be used to test for heterogeneity. For data with continuous variables, we can use DML to
analyze them [36]. In this paper, we propose an innovative approach for feature selection
based on DML. It assumes that all potential factors or variables are defined as observed
confounder X. T stands for Treatment, while outcome Y denotes the affected dependent
variable. In practice, the confounding variable X can be challenging to model satisfactorily
due to its high dimensionality. The DML approach creates a model capable of capturing
heterogeneous treatment effects by combining two machine learning predictive models
into a final stage estimation. This approach allows for the usage of arbitrary machine
learning algorithms for both prediction tasks, thereby increasing the model’s flexibility and
adaptability [37,38]. The DML approach involves two separate predictions in two separate
machine learning models for the treatment variable T and the outcome Y in the first stage.
In the second stage, these predictions are considered as new features that are used as the
final causal effect estimation model.

As shown in Figure 3, the variables T and X affect the dependent variable Y together,
while X also influences T. In the DML approach, we consider both Y and T as dependent
variables, and compute the differential effect on Y at different values of T by estimating
the effect of features on these two dependent variables. This method allows us to more
accurately capture the effects of the high dimensional confounding variable X on Y and
T, thereby improving the Accuracy and robustness of the causal effect estimation. These
formulas are shown below:

E(Y|X) = ML1(X) (3)

E(T|X) = ML2(X) (4)

We can then calculate the residuals of the variables Y and T, and perform the corre-
sponding regression analysis to obtain the coefficient θ, also known as the Conditional
Average Treatment Effect (CATE). The CATE provides a precise measure of the hetero-
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geneity of the effect across all samples, leading to a better understanding of how different
characteristics influence the mechanisms affecting the dependent variable.

Y − ML1(X) = θ[T − ML1(X)] + ϵ (5)

When the CATE shows a significant positive or negative difference at a 90% confidence
interval, we can confirm that the variable T has a significant effect on the outcome Y. In this
research, we treat each of the independent variables in the four datasets individually as a
treatment variable T and the remaining independent variables as confounding variables
X. By training the DML model, we test whether each variable has a significant positive or
negative difference in CATE. For those independent variables with significant differences,
we select them as key features for the next machine learning classification task. To verify
the feasibility of the DML-based feature selection method, we compare it with several other
feature selection methods mentioned earlier. By comparing the performance of different
methods in various classification tasks, we can assess the effectiveness and advantages of
DML methods in feature selection.

Figure 3. Structure of X, T and Y.

3.4. Machine Learning Models

For the selection of machine learning models, we choose six classical and widely
used models for analysis: Logistic Regression (LR), K-Nearest Neighbors (KNN),
Random Forest (RF), Extra Trees (ET), Histogram-based Gradient Boosting (Hist-GB),
and Light Gradient Boosting Machine (LightGBM). These traditional models have broad
applications and perform well in various fields, handling different types of data and
tasks [39].

For deep learning models, we select three: ANN, 1-Dimensional Convolutional Neural
Network (1D-CNN), and TabNet. ANN is simple in structure, easy to implement [40]. The
1-Dimensional CNN, a variant of CNN, is specifically designed to process one-dimensional
data such as time series and signals. It extracts local features from the data through convo-
lutional operations and reduces feature dimensions through a pooling layer, improving
the model’s efficiency and generalization [41]. TabNet is a deep learning model for tabular
data that uses the sequential attention mechanism for feature selection and data processing.
Arik and Pfister first proposed TabNet in their seminal study, demonstrating its excellent
performance on multiple datasets [42,43].

In our analysis, we randomly divide the dataset into training and testing sets, with 80%
of the data used to train models and the remaining 20% used to test the models’ performance.
To comprehensively evaluate the classification effectiveness of models, we adopt four
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commonly used classification metrics: Accuracy, Precision, Recall, and F1-Score. These
metrics measure the models’ performance from different perspectives,

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-Score =
2 × TP

2 × TP + FP + FN
= 2 × Precision × Recall

Precision + Recall
(9)

The closer the value of these indicators is to 1, the better the model’s classification
performance and the smaller the error. In practical applications, we use these indicators to
evaluate and compare the performance of different models, allowing us to select the most
suitable model for further optimization and application.

4. Experience Results
In this section, we show details of predictions obtained using various feature selection

methods and machine learning algorithms. We conduct experiments on four datasets:
fset_mean, fset_std, fset_dist, and fset_bones_mean. By combining seven feature selec-
tion methods with nine machine learning models, we obtain 63 combinations. First, we
categorize the datasets and evaluate the performance of these 63 combinations across
the four datasets: fset_mean, fset_std, fset_dist, and fset_bones_mean. Our results show
that the ANN-based feature selection method combined with the ET machine learning
model provides the best predictions for the fset_mean dataset. Similarly, for the fset_std
dataset, the DML method combined with the ET model yields the best results. The DML-ET
model also performs best on the fset_dist dataset, while the DML-RF model has the best
prediction effect based on the fset_bones_mean dataset. Figure 4 presents the confusion
matrix visualization plots for these four prediction results. Comparing these plots reveals
that the machine learning models perform relatively well on the fset_mean, fset_dist,
and fset_bones_mean datasets, with fewer classification errors. However, performance
on the fset_dist dataset is relatively average, with more classification errors. For further
analysis, the ANN feature selection method used in the fset_mean dataset significantly
improves the ET model’s prediction Accuracy. Additionally, the DML method combined
with the ET model demonstrates excellent classification ability on the fset_std and fset_dist
datasets. On the fset_bones_mean dataset, the DML method combined with the RF model
also shows outstanding performance, highlighting the adaptability and effectiveness of the
DML feature extraction method across different datasets.

To fairly assess the classification prediction effectiveness of these combinations, we
use the Mean value ± Standard Deviation (Mean ± Std) as an evaluation metric to observe
the average performance of all feature selection methods and classification models across
the four datasets. The results are shown in Table 2. The situation here differs slightly
from Figure 4. The table shows that the Accuracy of the fset_mean and fset_bones_mean
datasets is very high, with an average Accuracy exceeding 93%, regardless of the feature
selection methods and machine learning models used. In contrast, the fset_dist dataset,
which captures positional variations, has an average Accuracy 5–6% lower than the former
two. The fset_std dataset performs the worst, with an average Accuracy of less than 70%.
Further analysis of the standard deviation data in the table reveals that the fset_mean and
fset_bones_mean datasets exhibit good stability, with small fluctuation ranges in Accuracy
and other metrics, having a standard deviation between 5% and 6%. On the other hand,
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the fset_dist and fset_std datasets show more variability, with standard deviations ranging
from 9% to 10%. This suggests that the fset_mean and fset_bones_mean datasets are more
reliable for real-world classification applications, while the feasibility of using the fset_dist
and fset_std datasets for analysis needs to be carefully considered.

Figure 4. Best classification results for different datasets.

Table 2. Average classification results for different datasets.

Dataset Accuracy Precision Recall F1-Score

fset_mean 93.459 ± 5.496 93.954 ± 5.046 93.459 ± 5.496 93.443 ± 5.488
fset_std 69.068 ± 10.994 70.189 ± 10.475 69.084 ± 10.999 68.701 ± 11.296
fset_dist 88.399 ± 9.762 87.565±14.205 88.415 ± 9.776 88.211 ± 10.156

fset_bones_mean 93.610 ± 6.364 94.099 ± 5.800 93.610 ± 6.364 93.576 ± 6.387

In the next analysis, we compute the classification results using nine machine learning
models. We evaluate the performance of these models across all datasets and feature
selection methods, ultimately selecting the four best-performing models: DML-RF, DML-ET,
DML-Hist-GB, and DML-ANN. These four models perform best on the fset_bones_mean
and fset_mean datasets, as shown in Figure 5. Similarly to the models selected in Figure 4,
the DML-based feature selection method demonstrates good applicability to most machine
learning models. The features selected through the DML method have a significant positive
impact on predictive classification.

Individual machine learning models have inherent limitations, so we also evaluate
the average performance of all machine learning models, as shown in Table 3. The LR
and KNN models, which are based on single classifiers, perform the most averagely,
with Accuracies around 77% and 84%, respectively. This performance is significantly lower
than that of the tree-based machine learning models, which achieve Accuracies between
88% and 90%. Additionally, the prediction results of the LR and KNN models fluctuate
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widely, indicating lower stability. Among the four tree-based machine learning models,
the ET model performs the best, delivering excellent prediction results with low volatility.
Similarly, several common deep learning models, including ANN, 1D-CNN, and TabNet,
are used for comparative studies. The results show that ANN achieves the best classification
results, with average Accuracy comparable to that of tree-based machine learning models.
The 1D-CNN model’s classification performance is only slightly better than that of the
single classifier models, but its results fluctuate and are less stable. Surprisingly, the TabNet
model does not perform as well, with average Accuracy only slightly better than the linear
model LR and the worst stability among the nine models.

Figure 5. Best classification results for different machine learning models.

Table 3. Average classification results for different machine learning models.

Machine Learning Accuracy Precision Recall F1-Score

LR 77.589 ± 13.268 78.686 ± 13.296 77.589 ± 13.268 77.489 ± 13.432
KNN 83.929 ± 14.965 84.823 ± 14.361 83.929 ± 14.965 83.812 ± 15.020

RF 88.943 ± 11.763 89.428 ± 11.438 88.943 ± 11.763 88.924 ± 11.769
ET 90.089 ± 11.336 90.423 ± 11.094 90.089 ± 11.336 90.044 ± 11.391

Hist-GB 89.018 ± 10.444 89.407 ± 10.171 89.018 ± 10.444 88.993 ± 10.444
LightGBM 88.795 ± 10.495 89.166 ± 10.265 88.795 ± 10.495 88.788 ± 10.460

ANN 88.938 ± 10.589 86.238 ± 18.598 89.009 ± 10.562 89.074 ± 10.523
1D-CNN 85.775 ± 13.319 87.008 ± 12.374 85.775 ± 13.319 85.648 ± 13.488
TabNet 82.129 ± 15.568 82.890 ± 15.116 82.129 ± 15.568 81.071 ± 16.696

This suggests that, in terms of feature extraction, tree-based machine learning models
provide better classification results, while deep learning feature extraction methods may
not be suitable for this type of LMC-collected skeletal data, but may have better applications
in other areas. From this set of experiments, we can conclude the following:

• The characteristics of different datasets also impact model performance.



Sensors 2025, 25, 1126 14 of 21

• The choice of feature selection methods and machine learning models significantly
affects classification prediction performance. DML methods and tree-based machine
learning models perform well in classification prediction with high Accuracy and
stability, especially the ET model.

Based on these results, we recommend prioritizing tree-based ET model in practical
applications due to their robustness and stability.

Figure 6 illustrates the classification results using the four best-performing feature se-
lection methods: PCA-ANN, SFM-ET, ANN-ET, and DML-RF models. Similarly to Figure 5,
the datasets used for these top-performing models are fset_bones_mean and fset_mean.
There is almost no difference in the classification results of these four models regarding the
best results for each feature selection method. However, this research focuses more on the
generalization and robustness of the methods. It is expected that feature selection methods
manage to perform well across different datasets and machine learning models.

Figure 6. Best classification results for different feature selection methods.

We test the performance of all datasets and machine learning models using the seven
feature selection methods. As shown in Table 4 and Figure 7, these results highlight the
superiority of our proposed novel DML-based feature selection method. The average
Accuracy achieved by the traditional PCA-, SFM-, VAR-, and LASSO-based feature se-
lection methods in predicting the nine machine learning models does not exceed 90%.
Among them, PCA and SFM perform the best, with Accuracies over 89%, while VAR
achieves about 85%, and LASSO averages below 80%. For deep learning feature extraction
methods, ANN performs better, with an average Accuracy of 89.8%, while TabNet’s perfor-
mance is more comparable to the linear regression-based LASSO model. Similarly, Figure 7
shows that the overall performance of LASSO and TabNet is indeed poor, with TabNet’s
performance fluctuating significantly. Table 4 and Figure 7 both show that the extraction
effect of ANN is not as effective as DML. The ANN extraction method based on deep learn-
ing has the disadvantage of less interpretable features, whereas the DML method, selected
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based on the significance of the difference in the CATE value, offers higher interpretability
and reliability in various fields. Compared to all methods, the DML method achieves an
average prediction Accuracy of over 90%, the best performance among all feature extraction
methods. Figures 4 and 5 demonstrate that data processed by DML methods consistently
achieve the highest Accuracy rates, regardless of the dataset or machine learning model
used. This further proves the adaptability and effectiveness of the DML method across
different datasets and models.

To observe the performance of the feature selection method across each dataset and
machine learning model more intuitively, we try to conduct more in-depth analyses. The re-
sults of these analyses not only validate the superiority of the DML method, but also
provide valuable references for future research.

Table 4. Average classification results for different feature selection methods.

Feature Selection Accuracy Precision Recall F1-Score

PCA 89.195 ± 9.863 89.643 ± 9.904 89.195 ± 9.863 88.990 ± 10.298
SFM 89.472 ± 10.369 90.023 ± 10.081 89.472 ± 10.369 89.383 ± 10.540
VAR 84.722 ± 12.089 85.403 ± 11.889 84.750 ± 12.062 84.474 ± 12.559

LASSO 79.850 ± 11.226 80.777 ± 10.999 79.850 ± 11.226 79.607 ± 11.425
ANN 89.861 ± 9.574 87.897 ± 16.680 89.861 ± 9.574 89.810 ± 9.701

TabNet 79.576 ± 20.161 80.626 ± 19.084 79.576 ± 20.161 79.440 ± 20.299
DML 90.260 ± 10.069 90.794 ± 9.942 90.288 ± 10.088 90.175 ± 10.365

Figure 7. Comparisons of Accuracy based on feature selection methods.

We divide the results into the performance of classification metrics based on feature
selection methods and datasets. For more convenient and effective presentation, we se-
lect the five best-performing feature selection methods from Table 4: PCA, SFM, VAR,
ANN, and DML, as shown in Table 5. Similarly to the results in Table 2, we can see that
all machine learning models perform very well on the fset_mean and fset_bones_mean
datasets, with Accuracies exceeding 95% in most cases. The only exception is the fset_mean
dataset based on the VAR method, which performs relatively average, with an Accuracy
of about 91%. These two datasets contain features highly relevant to the research topic of
gesture identification, leading to better performance. Moreover, the DML method achieves
the best classification results in both the fset_mean and fset_bones_mean datasets. In the
fset_bones_mean dataset, the DML method has an Accuracy of 96.824%, about 0.2% higher
than the second-ranked VAR method. In the fset_std and fset_dist datasets, the DML
method still maintains its leading position, although the prediction Accuracies of all meth-
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ods under these two datasets are relatively low. These results indicate that DML methods
have high reliability and adaptability across different kinds of datasets, outperforming tra-
ditional feature selection methods and deep learning-based feature extraction methods. Ad-
ditionally, the DML method provides important reference value in variable interpretation.

Table 5. Average classification results for different feature selection methods and data.

Feature
Selection Dataset Accuracy Precision Recall F1-Score

PCA

fset_mean 95.833 ± 2.142 96.127 ± 1.918 95.833 ± 2.142 95.708 ± 2.376
fset_std 74.351 ± 7.620 74.811 ± 8.326 74.351 ± 7.620 73.794 ± 8.828
fset_dist 91.436 ± 3.914 92.125 ± 3.316 91.436 ± 3.914 91.347 ± 3.894

fset_bones_mean 95.158 ± 2.480 95.508 ± 2.392 95.158 ± 2.480 95.112 ± 2.520

SFM

fset_mean 95.972 ± 2.214 96.309 ± 2.122 95.972 ± 2.214 95.962 ± 2.221
fset_std 73.658 ± 6.126 74.626 ± 6.095 73.658 ± 6.126 73.380 ± 6.598
fset_dist 91.824 ± 6.068 92.468 ± 5.854 91.824 ± 6.068 91.769 ± 6.067

fset_bones_mean 96.436 ± 2.117 96.690 ± 1.893 96.436 ± 2.117 96.422 ± 2.125

VAR

fset_mean 91.759 ± 5.432 92.703 ± 4.326 91.759 ± 5.432 91.716 ± 5.444
fset_std 72.316 ± 3.696 73.216 ± 3.646 72.427 ± 3.715 72.029 ± 4.175
fset_dist 78.149 ± 12.181 78.756 ± 12.309 78.149 ± 12.181 77.497 ± 13.255

fset_bones_mean 96.666 ± 1.924 96.939 ± 1.690 96.666 ± 1.924 96.656 ± 1.935

ANN

fset_mean 96.249 ± 1.757 96.592 ± 1.624 96.249 ± 1.757 96.353 ± 1.737
fset_std 74.769 ± 3.531 75.768 ± 3.438 74.769 ± 3.531 74.539 ± 3.576
fset_dist 92.037 ± 5.629 92.529 ± 5.368 92.037 ± 5.629 91.951 ± 5.763

fset_bones_mean 96.390 ± 1.863 96.699 ± 1.658 96.390 ± 1.863 96.395 ± 1.857

DML

fset_mean 96.528 ± 2.240 96.801 ± 1.959 96.528 ± 2.240 96.532 ± 2.230
fset_std 75.325 ± 5.210 76.196 ± 5.799 75.325 ± 5.210 74.910 ± 6.067
fset_dist 92.362 ± 7.708 92.999 ± 7.754 92.473 ± 7.776 92.439 ± 7.818

fset_bones_mean 96.824 ± 2.019 97.180 ± 1.726 96.824 ± 2.019 96.819 ± 2.029

Finally, we divide the results into the performance of classification metrics based on
feature selection methods and machine learning models. To present these results more
conveniently and effectively, we select the five best-performing feature selection methods
from Table 4: PCA, SFM, VAR, ANN, and DML. Meanwhile, based on Table 4, we select
the four machine learning models with the best average performance: RF, ET, Hist-GB,
and ANN. The computational results are shown in Table 6 and Figure 8.

From the results in Table 6 and Figure 8, we can clearly find that the VAR-based
method has the most average classification results. In all the machine learning models
using the VAR feature extraction method, their classification indexes do not exceed 90%,
with some results even falling between 86 and 87%. This indicates that not only does the
underlying data impact the model, but the choice of feature selection method is also crucial.
Among the feature selection methods, the performance of PCA and ANN is comparable,
with Accuracies ranging between 90 and 92%. The gap between the upper and lower limits
of ANN extraction methods can be seen in Figure 8 and, similarly, the fluctuation of ANN
in Table 6 is relatively large, with a standard deviation around 10%, much higher than the
other four feature extraction methods. Moreover, the ANN variable importance extraction
method has the drawback of the neural network’s black-box nature, making the variables
unreliable in scenarios or studies that require more interpretability. PCA, which composes
new variables through linear transformation, also falls short in terms of interpretability.

The performances of the remaining SFM and DML methods are also relatively close,
as shown in Figure 8, where the boxplot distributions of these two feature selection methods
are similar. In the ANN classification model, DML performs slightly worse than SFM.
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However, in the remaining three tree-based machine learning models, DML outperforms
SFM in terms of Accuracy. Notably, under the ET model, DML improves by about 2% points
over the SFM method. This indicates that the DML variable extraction method has better
performance, attributed to its ability to seek the causal relationship between independent
and dependent variables while also selecting the variable indicators that are more important
for the results. Therefore, using DML for variable selection is more advantageous.

Table 6. Average classification results for different feature selection methods and machine learn-
ing models.

Feature Selection Machine Learning Accuracy Precision Recall F1-Score

PCA

RF 90.312 ± 7.808 90.702 ± 7.487 90.312 ± 7.808 90.258 ± 7.815
ET 90.417 ± 8.265 91.024 ± 7.990 90.417 ± 8.265 90.350 ± 8.266

Hist-GB 91.667 ± 7.586 91.834 ± 7.648 91.667 ± 7.586 91.605 ± 7.637
ANN 91.083 ± 8.724 91.391 ± 8.660 91.083 ± 8.724 91.017 ± 8.791

SFM

RF 92.083 ± 8.705 92.366 ± 8.638 92.083 ± 8.705 92.081 ± 8.705
ET 92.292 ± 9.549 92.536 ± 9.404 92.292 ± 9.549 92.262 ± 9.600

Hist-GB 92.396 ± 7.213 92.609 ± 7.145 92.396 ± 7.213 92.398 ± 7.198
ANN 92.438 ± 7.182 92.907 ± 6.697 92.438 ± 7.182 92.675 ± 6.734

VAR

RF 86.771 ± 12.002 87.114 ± 11.925 86.771 ± 12.002 86.700 ± 12.100
ET 89.792 ± 9.476 90.028 ± 9.467 89.792 ± 9.476 89.784 ± 9.486

Hist-GB 86.771 ± 9.796 87.075 ± 9.701 86.771 ± 9.796 86.729 ± 9.794
ANN 87.188 ± 9.778 87.765 ± 9.229 87.438 ± 9.405 87.456 ± 9.367

ANN

RF 90.729 ± 11.526 91.149 ± 11.214 90.729 ± 11.526 90.810 ± 11.401
ET 92.708 ± 9.079 92.896 ± 9.018 92.708 ± 9.079 92.720 ± 9.055

Hist-GB 91.042 ± 9.531 91.314 ± 9.350 91.042 ± 9.531 91.060 ± 9.492
ANN 90.000 ± 10.108 90.547 ± 10.148 90.000 ± 10.108 90.269 ± 10.205

DML

RF 93.125 ± 8.114 93.545 ± 7.726 93.125 ± 8.114 93.180 ± 8.002
ET 94.062 ± 7.403 94.405 ± 7.017 94.062 ± 7.403 94.084 ± 7.376

Hist-GB 92.812 ± 7.674 93.259 ± 7.300 92.812 ± 7.674 92.856 ± 7.612
ANN 92.333 ± 8.331 93.218 ± 7.819 92.333 ± 8.331 92.647 ± 8.374

Figure 8. Comparisons of Accuracy based on feature selection methods and machine learning models.

According to the results in Tables 4–6 and Figure 8, our research find that the feature
selection method and the choice of machine learning model significantly affect classification
performance. PCA and ANN perform well in terms of Accuracy, but lack interpretability.
SFM and DML perform well across different models, with DML performing particularly
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well in tree-based models. These findings provide important references for future research
and applications.

5. Conclusions
In this research, we introduce a new feature selection method for the gesture identifica-

tion task using gesture data collected by the LMC device. Building on previous research [8],
we appropriately extended various methods. Overall, we employ the DML method in
causal machine learning for effective selection of the dependent variable, alongside six other
feature selection methods and nine machine learning algorithms, to conduct a comparative
study on four different types of datasets. This approach ultimately achieves excellent classi-
fication results. Through these experiments, we have drawn the following conclusions:

• The characteristics of different datasets significantly affect model performance.
The fset_mean and fset_bones_mean datasets are preferable for classification pre-
diction due to their high Accuracy and stability. Conversely, the fset_dist and fset_std
datasets should be used with caution in practical applications due to their higher
volatility and lower average Accuracy.

• The choice and combination of feature selection methods and machine learning models
significantly impact classification prediction effectiveness. Linear classifiers or single
classifiers (e.g., LR and KNN) are generally less effective, while tree-based machine
learning models perform better in such tasks, especially ET models. Additionally,
DML method based on causal inference has a significant advantage in feature selection,
even slightly outperforming feature extraction methods based on ANN models. DML
achieves the best classification results while ensuring interpretability.

Through these analyses, we can understand the performance of different feature
selection methods and machine learning models on various datasets better. This not
only verifies the superiority of the DML method, but also provides a new perspective for
feature engineering research. In future research, we can further explore how to optimize
these combinations and extend the application of DML to different research topics and
datasets. For example, we can add more diverse gestures to the dataset or validate the
application of causal inference in feature engineering using other models such as Linear
DML, Sparse Linear DML, and Causal Forest DML. Furthermore, when facing with other
research topics or datasets, we can explore the application of causal inference methods
in explainable learning and feature engineering. In the next step, we will also conduct
comparative investigations of different methods using well-known financial, medical,
commercial, and other public datasets to determine which causal inference methods are
more reliable. These findings can help us make more informed decisions in real-world
engineering projects, thereby improving overall classification prediction performance.
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