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Abstract
Causal machine learning combines causal inference and machine
learning to understand and utilize causal relationships in data.
While traditional machine learning focuses on missions of pre-
diction and pattern recognition, causal machine learning goes a
step further by revealing causal relationships between variables. In
this research, we employ the double machine learning method to
identify variables in the gesture recognition problem where inde-
pendent variables have causal relationships with the final gesture.
These variables are then selected for further classification and anal-
ysis. By comparing this approach with traditional feature selection
methods, we find that the variables selected using double machine
learning are more useful for classification and yield excellent re-
sults across different machine learning classification models. This
new double machine learning based approach provides a valuable
reference for researchers during the feature selection stage.
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1 Introduction
With the rapid development of computer and Internet technology,
human-computer interaction (HCI) has received widespread atten-
tion. Nowadays, people’s interaction is gradually shifting from
using keyboards, mice, and touchscreens as input devices to us-
ing touchless interaction. In this development process, gesture
recognition is becoming popular and accepted by the public as a
novel touchless interaction method [1]. In general, gesture recog-
nition is divided into two methods. One is the usage of computer
vision-based recognition techniques, where hand images are cap-
tured by one or more cameras, and deep learning algorithms such
as neural networks and convolutional neural networks are used
for categorization [2]. The other method is sensor-based, which
involves using digital gloves and 3D depth sensors to collect data.
Although research on sensor-based methods began earlier than
computer vision-based recognition techniques, their practical ap-
plications are very limited because these methods require wearable
devices such as digital gloves to track and estimate the position and
orientation of the hand and fingers [3].

The advent of 3D depth sensor tools, such as the leap motion
controller (LMC), provides a low-cost and more effective method
for detecting and tracking hand movements. The LMC can output
data such as hand orientation, fingertip position, bone position, and
other points of interest. Marin et al. used three feature datasets col-
lected by the LMC (fingertip distance, fingertip angle, and fingertip
height) and found that the accuracy of static gesture recognition
based on LMC reached 80% [4]. The LMC is also promising for
other specialized fields. Ameur et al. defined 11 dynamic gestures
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for medical image manipulation based on the problem of touchless
interaction in aseptic areas in healthcare and used 3D positional
information as input features for models [5]. Additionally, the
same research team released a dataset containing more samples
and richer spatial-frequency features [6]. With the increasing ac-
curacy of data acquisition, the LMC can provide data on skeletal
movements. Boulahia et al. extended the existing action recogni-
tion feature set HIF3D and used the LMC to acquire a new dataset
containing the 3D coordinates of 46 joints (23 joints on one hand),
aiming to create a closer representation of the whole body and
gestures through the skeleton data [7]. Subsequently, Li et al. pro-
posed a skeleton-based gesture recognition enhancement method,
showing that the static gesture recognition accuracy was as high
as 94%, and the dynamic gesture recognition rate, combined with
the initial FC strategy, reached more than 90% [8].

However, as the richness of LMC data types increases, the num-
ber of variables available in studies gradually rises. When dealing
with high dimensional LMC data, feature selection becomes par-
ticularly important as it can significantly reduce the time cost and
complexity of the analysis process. In recent years, research on
feature selection has become popular, with various statistical based
methods such as recursive feature elimination (RFE), chi-square,
and genetic algorithms. These methods can help reduce data dimen-
sions and improve the efficiency of model training [9]. Additionally,
causal machine learning leverages the strong fit of machine learn-
ing models to describe the individual variables that have a positive
or negative effect on the final dependent variable outcome through
changes in treatment effect values [10]. Yan et al. demonstrated
in their paper that the causal uplift model can be useful for the
complementary refinement of SHAP graphs for interpretable ma-
chine learning [11]. In this research, we propose a relatively novel
approach for feature selection. We use the double machine learning
model to determine whether there is a significant difference in the
treatment effect of a single variable on the dependent variable while
controlling for other variables. We evaluate the effectiveness of
this screening method by comparing double machine learning with
other variable selection methods.

The remainder of this research is organized as follows: In section
2, we provide a detailed description of the environment setup, the
dataset, feature selection methods, and machine learning methods.
In section 3, we present the detailed experimental procedure and
results. Finally, we summarize the research in the last section.

2 Materials and methods
This section discusses the collection of data and information about
the variables of interest. Next, we introduce the double machine
learning feature selection method in this research. Finally, we
briefly describe the machine learning classification methods em-
ployed in the experiments.

2.1 Gesture dataset collection
We collected all data in a controlled indoor environment. The LMC
was placed on a flat tabletop in front of a whiteboard, on which
we drew a 3x3 grid, with each square measuring 10x10 cm. The
LMC was connected to a laptop computer via a USB cable, and a
researcher monitored and controlled the data collection process.

Table 1: Description of Hand Gestures

Movement of Gestures Description

Index rotate with counterclockwise direction

Index rotate with clockwise direction

Release up

Release down

Grip in

Grip out

Index swipe left

Index swipe right

Hand swipe right

Hand swipe left

During the experiment, participants placed their hands on the LMC
and pointed their fingers toward the whiteboard as the initial hand
position. A total of 12 participants (7 females and 5 males) took part
in this experiment. The experiment involved 10 different movement
of gestures, with each participant repeating each movement 10
times, all 10 movement of gestures were listed in Table 1.

2.2 Structure of the gesture dataset
For the collected raw data, we define three types of feature sets:
single-finger features, two-finger features, and bone-finger features.
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For single-finger features, we focus on the 3D spatial characteristics
of the hand and fingers. The variables involved in single-finger
features include hand position, hand direction and normal, finger-
tips position, and fingertips direction. We divide these into two
datasets: fset_mean, which contains the mean of the variables, and
fset_std, which contains the standard deviation of the variables.
For the two-finger features dataset fset_dist, we include the eu-
clidean distance between the fingertip and the palm center, as well
as the distance between adjacent fingertips, to evaluate the per-
formance of distance-based gesture recognition features. For the
bone-finger features, the positions of the distal and intermediate
phalanges (the value of ‘prev_joint’, which is the position of the
end of the bone closest to the wrist in the LMC API) are extracted
as bone-based 3D spatial variables. The final bone-finger feature
set fset_bones_mean includes hand position, hand direction and
normal, fingertips position, fingertips direction, distal phalanges
position, and intermediate phalanges position.

2.3 Feature selection methods and classification
algorithms

In the area of big data, feature selection methods play a crucial
role in data preprocessing for machine learning and data mining.
By identifying and selecting the most informative features, feature
selection methods not only significantly improve model perfor-
mance but also reduce computational complexity and the risk of
overfitting. In practical projects, there are several commonmethods
for feature selection. One such method is the variance threshold
(VAR) [12], which is based on the principle that the variance of
each feature indicates the degree of data dispersion. Features with
smaller variances provide less information. We achieve feature
selection by calculating the variance of each feature and removing
those below a certain threshold. Another method is select from
model (SFM), a model-based feature selection technique. It evalu-
ates the importance of features by learning the parameters of the
model or the importance of the variables, deciding which features
to retain. The random forest model is often used for this purpose.
A different approach is principal component analysis (PCA), which
focuses on compressing feature dimensions rather than selecting
features [13]. PCA simplifies the data structure by projecting high-
dimensional data into a low-dimensional space while retaining the
main information of all features.

We propose a novel approach: feature selection based on double
machine learning (DML). In traditional causal inference studies,
DML is a method for estimating heterogeneous treatment effects,
assuming that we can observe all potential factors or variables, de-
fined as confounders X. T stands for the treatment variable, while
Y denotes the potentially affected dependent variable. In reality,
confounders X may be too high in dimension for satisfactory model-
ing. The DML approach combines two machine learning predictive
models in the final stage to create a model for calculating heteroge-
neous treatment effects. This method allows any machine learning
algorithm to be used for both prediction tasks [14].

As shown in Figure 1, T and X simultaneously affect the variable
Y, while X also influences the variation of T. In DML, we treat both
Y and T as dependent variables and calculate the variability of the
effect on Y under different T by estimating the effect of features on

Figure 1: Structure of X, T and Y

the dependent variable. First, we build two independent machine
learning models to predict Y and T, respectively, with X as the
dependent variable. The formulas are shown below.

� (. |- ) = "!1 (- )

� () |- ) = "!2 (- )
We can then obtain the coefficient \ , also known as the condi-

tional average treatment effect (CATE), by calculating the residuals
of Y and T and performing the corresponding regression.

. −"!1 (- ) = \ · [) −"!2 (- )] + Y

When CATE shows a significant positive or negative difference,
we can assume that the variable T has a significant effect on the
results. In this research, we treat each variable in the four datasets
(fset_mean, fset_std, fset_dist, fset_bones_mean) as variable T indi-
vidually, while categorizing all remaining independent variables
as variable X. We detect whether each variable has a significant
CATE difference by training the DML model. Eventually, we select
the variables with significant CATE differences for the next step of
machine learning classification tasks. To test the superiority of the
DML-based feature selection method, we also compare its classifi-
cation effects with those of the three traditional feature selection
methods mentioned above.

In terms of machine learning models, we select six traditional
models for analysis: logistic regression (LR), k-nearest neighbors
(KNN), random forest (RF), extra trees (ET), histogram-based gradi-
ent boosting (Hist-GB), and light gradient boosting machine (Light-
GBM). These models are widely used in various fields [15]. During
the analysis, 80% of the data is used to train the model, and the
remaining 20% is used to test the model. Four classification metrics
are involved: accuracy, precision, recall, and f1 score. These met-
rics estimate the error between the actual gesture and the model’s
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Table 2: Average Classification Results for different Dataset

Dataset accuracy precision recall f1 score

fset_mean 95.122 ± 3.827 95.554 ± 3.222 95.122 ± 3.827 95.108 ± 3.812
fset_std 72.153 ± 7.090 73.203 ± 7.109 72.153 ± 7.090 72.169 ± 7.135
fset_dist 89.184 ± 8.459 89.787 ± 8.079 89.184 ± 8.459 89.155 ± 8.449
fset_bones_mean 95.937 ± 3.203 96.239 ± 2.983 95.937 ± 3.203 95.893 ± 3.295

Table 3: Average Classification Results for different Machine Learning Models

Machine Learning accuracy precision recall f1 score

LR 80.625 ± 11.005 81.801 ± 10.970 80.625 ± 11.005 80.563 ± 11.051
KNN 85.755 ± 13.495 86.524 ± 13.012 85.755 ± 13.495 85.692 ± 13.492
RF 90.182 ± 10.402 90.663 ± 9.993 90.182 ± 10.402 90.203 ± 10.346
ET 91.641 ± 9.194 92.041 ± 8.880 91.641 ± 9.194 91.630 ± 9.173
Hist-GB 90.260 ± 9.843 90.626 ± 9.600 90.260 ± 9.843 90.269 ± 9.803
LightGBM 90.130 ± 9.461 90.518 ± 9.244 90.130 ± 9.461 90.131 ± 9.429

predicted gesture. When these metrics are closer to 1, it indicates
better classification performance.

3 Experiment Results
This section lists the predictions under different feature selection
and machine learning algorithms. We conduct experiments on four
datasets: fset_mean, fset_std, fset_dist, and fset_bones_mean. Four
feature selection methods and six machine learning models can
form 24 combinations. To fairly evaluate the models, we use the
mean value ± standard deviation (Mean ± SD) to assess the validity
of the classification predictions.

First, we classify the dataset and calculate the performance
of the 24 combinations in the four datasets: fset_mean, fset_std,
fset_dist, and fset_bones_mean, as shown in Table 2. It can be
intuitively seen that regardless of the feature selection methods
and machine learning models used, the accuracy for the fset_mean
and fset_bones_mean datasets is very high, reaching over 95%. In
contrast, the fset_dist dataset, which extracts positional variations,
shows a 6% lower accuracy compared to the former two datasets.
The standard deviation-based dataset, fset_std, performs the worst,
with only about 72% accuracy. Additionally, from the standard
deviation calculated in the table, it can be seen that the fset_mean
and fset_bones_mean datasets have good stability, with a small
fluctuation range in accuracy and other indicators. On the other
hand, the fset_dist and fset_std datasets perform poorly with wide
fluctuations in their results. Therefore, their usage in practical
applications should be carefully considered.

Next, we calculate the classification results based on the six
machine learning models. We evaluate the performance of these
models across all datasets and feature selection methods, as shown
in Table 3. Firstly, the LR and KNN models, which are based on
single classifiers, show the most average performance, with mean
values of 80% and 85%, respectively. These results are significantly
less effective than those of the tree-based machine learning mod-
els, all of which predicted results of over 90%. Additionally, the
prediction results of both the LR and KNN models exhibited larger

fluctuations compared to the tree-based models, indicating less sta-
bility. Among the four tree-based machine learning models, the ET
model achieve the best prediction results and the lowest volatilities.
Therefore, in practical applications, we should prioritize tree-based
machine learning models, especially the ET model, due to its better
robustness.

In order to observe which feature selection method is superior,
we test the performance results of all datasets and machine learning
models based on the four feature selection methods. As shown in
Table 4 and Figure 2, both visualize the superiority of our proposed
novel DML-based approach for feature selection. The traditional
feature selection methods, PCA, SFM, and VAR, achieve an average
accuracy that does not exceed 90% in any of the six subsequent
machine learning model predictions, with PCA being the closest to
this figure. SFM and VAR only reached 87% and 85%, respectively.
In contrast, the DML method has a prediction accuracy of more
than 90%. Among them, PCA and DML have similar effects. How-
ever, during the calculation process, PCA compresses all variables
to generate new ones. These new variables retain most of the origi-
nal information, but their interpretability is poor. However, with
DML method, we can still explore the impact of these variables on
the outcome after selecting variables using causal machine learn-
ing, maintaining the interpretability of machine learning. Figure 2
shows that the overall performance of SFM and VAR is quite poor,
with SFM exhibiting a wider range of fluctuations. To better visual-
ize the performance effect of feature selection under each dataset
and each machine learning model, we conduct a deeper analysis.

We divide the results into performance based on feature se-
lection and classification metrics under the dataset, as shown in
Table 5. Similar to the results in Table 2, we can see that all ma-
chine learning models achieve better results with the fset_mean and
fset_bones_mean datasets, which contain features more aligned
with the research topic of gesture recognition. We can also observe
that the DML method achieves the best classification results with
both the fset_mean and fset_bones_mean datasets. Specifically, in
the fset_bones_mean dataset, its 97.014% accuracy is 0.5% higher
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Figure 2: Comparisons of Accuracy based on Feature Selection Methods

Table 4: Average Classification Results for different Feature Selection Methods

Feature Selection accuracy precision recall f1 score

PCA 89.705 ± 8.623 90.216 ± 8.375 89.705 ± 8.623 89.651 ± 8.637
SFM 87.413 ± 13.548 87.803 ± 13.361 87.413 ± 13.548 87.361 ± 13.578
VAR 85.243 ± 11.586 86.140 ± 11.006 85.243 ± 11.586 85.264 ± 11.521
DML 90.035 ± 10.289 90.624 ± 9.853 90.035 ± 10.289 90.049 ± 10.293

Table 5: Average Classification Results for different Feature Selection Methods and Dataset

Feature Selection Dataset accuracy prcision recall f1 score

PCA fset_mean 96.250 ± 1.577 96.490 ± 1.357 96.250 ± 1.577 96.218 ± 1.586
fset_std 76.389 ± 3.622 77.147 ± 3.490 76.389 ± 3.622 76.319 ± 3.619
fset_dist 90.833 ± 5.023 91.509 ± 4.672 90.833 ± 5.023 90.760 ± 5.026
fset_bones_mean 95.347 ± 1.823 95.720 ± 1.613 95.347 ± 1.823 95.308 ± 1.850

SFM fset_mean 95.833 ± 2.690 96.093 ± 2.559 95.833 ± 2.690 95.817 ± 2.697
fset_std 66.875 ± 8.897 67.506±8.920 66.875±8.897 66.824±9.001
fset_dist 92.014 ± 7.190 92.410 ± 6.970 92.014 ± 7.190 92.000 ± 7.165
fset_bones_mean 94.931 ± 5.066 95.201 ± 4.771 94.931 ± 5.066 94.805 ± 5.255

VAR fset_mean 92.014 ± 5.327 92.916 ± 4.235 92.014 ± 5.327 91.996 ± 5.278
fset_std 69.653 ± 3.371 71.123 ± 3.665 69.653 ± 3.371 69.756 ± 3.192
fset_dist 82.847 ± 8.500 83.777 ± 7.742 82.847 ± 8.500 82.854 ± 8.462
fset_bones_mean 96.458 ± 2.135 96.742 ± 1.954 96.458 ± 2.135 96.450 ± 2.133

DML fset_mean 96.389 ± 2.729 96.716 ± 2.391 96.389 ± 2.729 96.401 ± 2.717
fset_std 75.694 ± 5.732 77.035 ± 5.473 75.694 ± 5.732 75.778 ± 5.891
fset_dist 91.042 ± 9.093 91.453 ± 9.056 91.042 ± 9.093 91.009 ± 9.142
fset_bones_mean 97.014 ± 2.171 97.291 ± 1.926 97.014 ± 2.171 97.009 ± 2.182

than the second-ranked VAR method. In the fset_std and fset_dist
datasets, DML also achieved the second position, with performance
not much different from the corresponding first-ranked feature
selection method. Therefore, from a comprehensive perspective,
the new DML method has a more obvious advantage in feature
selection.

Finally, we divide the results into the performance of classifi-
cation metrics based on feature selection and machine learning

models, as shown in Table 6 and Figure 3. From these, we can
clearly see that the classification effect based on SFM and VAR
methods is the most general. None of the classification indexes
based on SFM and LR, KNN models exceeded 90%. In the VAR
method, the classification index of all machine learning models
ranged only between 78-86%. Not only does the underlying data
impact the model, but the choice of feature selection method is also
crucial. Among them, PCA and DML methods have comparable
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Figure 3: Comparisons of Accuracy based on Feature Selection Methods and Machine Learning Models

Table 6: Average Classification Results for different Feature Selection Methods and Machine Learning Models

Feature Selection Machine Learning accuracy prcision recall f1 score

PCA LR 86.146 ± 6.849 87.232 ± 6.471 86.146 ± 6.849 86.126 ± 6.806
KNN 87.708 ± 11.568 88.405 ± 11.109 87.708 ± 11.568 87.662 ± 11.563
RF 90.521 ± 7.775 90.888 ± 7.543 90.521 ± 7.775 90.476 ± 7.828
ET 91.458 ± 6.552 91.915 ± 6.344 91.458 ± 6.552 91.380 ± 6.518
Hist-GB 91.146 ± 8.516 91.371 ± 8.539 91.146 ± 8.516 91.091 ± 8.565
LightGBM 91.250 ± 8.042 91.487 ± 8.187 91.250 ± 8.042 91.173 ± 8.125

SFM LR 76.250 ± 13.598 76.771 ± 13.956 76.250 ± 13.598 76.018 ± 13.699
KNN 83.854 ± 17.044 84.472 ± 16.597 83.854 ± 17.044 83.791 ± 16.974
RF 90.625 ± 11.202 91.060 ± 10.802 90.625 ± 11.202 90.605 ± 11.219
ET 91.562 ± 10.807 91.939 ± 10.426 91.562 ± 10.807 91.584 ± 10.750
Hist-GB 91.250 ± 9.633 91.461 ± 9.588 91.250 ± 9.633 91.248 ± 9.622
LightGBM 90.938 ± 9.941 91.112 ± 9.939 90.938 ± 9.941 90.923 ± 9.940

VAR LR 78.437 ± 10.028 80.772 ± 9.412 78.437 ± 10.028 78.445 ± 10.026
KNN 85.000 ± 11.141 85.833 ± 10.842 85.000 ± 11.141 84.950 ± 11.080
RF 86.458 ± 12.578 87.160 ± 12.059 86.458 ± 12.578 86.554 ± 12.432
ET 89.479 ± 10.633 89.906 ± 10.347 89.479 ± 10.633 89.475 ± 10.648
Hist-GB 85.833 ± 11.641 86.412 ± 11.160 85.833 ± 11.641 85.879 ± 11.529
LightGBM 86.250 ± 10.337 86.755 ± 9.955 86.250 ± 10.337 86.282 ± 10.241

DML LR 81.667 ± 9.829 82.429 ± 9.996 81.667 ± 9.829 81.662 ± 9.833
KNN 86.458 ± 13.099 87.387 ± 12.324 86.458 ± 13.099 86.367 ± 13.229
RF 93.125 ± 8.114 93.545 ± 7.726 93.125 ± 8.114 93.180 ± 8.002
ET 94.062 ± 7.403 94.405 ± 7.017 94.062 ± 7.403 94.084 ± 7.376
Hist-GB 92.812 ± 7.674 93.259 ± 7.300 92.812 ± 7.674 92.856 ± 7.612
LightGBM 92.083 ± 8.181 92.718 ± 7.526 92.083 ± 8.181 92.147 ± 8.083

performance. For LR and KNN models, the performance under
PCA-based methods is better than DML. This may be because PCA
can linearly compress high-dimensional variables, reducing the
pressure on single-model machine learning models to classify accu-
rately when facing high-dimensional data. The tree-based machine
learning models under the DML method outperform all other meth-
ods. In addition to the strong fitting ability of tree-based machine
learning models, DML plays a role in selecting the variables that

are more important to the results by indicating their significance
while seeking the causal relationship between the independent
and dependent variables. This makes the use of DML for variable
selection more advantageous.

4 Conclusions
In this research, a new feature selection method DML is introduced
for gesture recognition. The DML method in causal inference is
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used to select the dependent variable in gesture recognition more
effectively, and six machine learning algorithms are employed to
achieve better classification results. The best classification results
are obtained on the fset_mean and fset_bones_mean datasets. In
summary, this research uses gesture recognition examples to con-
firm the practical value of DML in feature selection and provides
a new perspective for feature selection in many fields. In future
research, we can further expand the research samples or explore
different topics. For example, we can add more styles of gestures to
the dataset or validate the feature selection more effectively with
the help of additional models in causal inference, such as linear
DML, sparse linear DML, and causal forest DML.
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