Your search
Results 121 resources
-
In 2020, the World Health Organization declared the Coronavirus Disease 19 a global pandemic. While detecting COVID-19 is essential in controlling the disease, prognosis prediction is crucial in reducing disease complications and patient mortality. For that, standard protocols consider adopting medical imaging tools to analyze cases of pneumonia and complications. Nevertheless, some patients develop different symptoms and/or cannot be moved to a CT-Scan room. In other cases, the devices are not available. The adoption of ambulatory monitoring examinations, such as Electrocardiography (ECG), can be considered a viable tool to address the patient’s cardiovascular condition and to act as a predictor for future disease outcomes. In this investigation, ten non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) extracted from 2 ECG signals (collected from 2 different patient’s positions). Windows of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: (Low vs. Moderate, Low vs. Severe, Moderate vs. Severe) and 1 Multi-class comparison (All vs. All)). The results indicate that some statistically significant parameter distributions were found for all comparisons. (Low vs. Moderate—Approximate Entropy p-value = 0.0067 < 0.05, Low vs. Severe—Correlation Dimension p-value = 0.0087 < 0.05, Moderate vs. Severe—Correlation Dimension p-value = 0.0029 < 0.05, All vs. All—Correlation Dimension p-value = 0.0185 < 0.05. The non-linear analysis of the time-frequency representation of the ECG signal can be considered a promising tool for describing and distinguishing the COVID-19 severity activity along its different stages.
-
Small and medium-sized enterprises (SMEs) can benefit significantly from open innovation by gaining access to a broader range of resources and expertise using absorptive capacitive, and increasing their visibility and reputation. Nevertheless, multiple barriers impact their capacity to absorb new technologies or adapt to develop them. This paper aims to perform an analysis of relevant topics and trends in Open Innovation (OI) and Absorptive Capacity (AC) in SMEs based on a bibliometric review identifying relevant authors and countries, and highlighting significant research themes and trends. The defined string query is submitted to the Web of Science database, and the bibliometric analysis using VOSviewer software. The results indicate that the number of scientific publications has consistently increased during the past decade, indicating a growing interest of the scientific community, reflecting the industry interest and possibly adoption of OI, considering Absorptive. This bibliometric analysis can provide insights on the most relevant regions the research areas are under intensive development.
-
<jats:p>Causal machine learning is an approach that combines causal inference and machine learning to understand and utilize causal relationships in data. In current research and applications, traditional machine learning and deep learning models always focus on prediction and pattern recognition. In contrast, causal machine learning goes a step further by revealing causal relationships between different variables. We explore a novel concept called Double Machine Learning that embraces causal machine learning in this research. The core goal is to select independent variables from a gesture identification problem that are causally related to final gesture results. This selection allows us to classify and analyze gestures more efficiently, thereby improving models’ performance and interpretability. Compared to commonly used feature selection methods such as Variance Threshold, Select From Model, Principal Component Analysis, Least Absolute Shrinkage and Selection Operator, Artificial Neural Network, and TabNet, Double Machine Learning methods focus more on causal relationships between variables rather than correlations. Our research shows that variables selected using the Double Machine Learning method perform well under different classification models, with final results significantly better than those of traditional methods. This novel Double Machine Learning-based approach offers researchers a valuable perspective for feature selection and model construction. It enhances the model’s ability to uncover causal relationships within complex data. Variables with causal significance can be more informative than those with only correlative significance, thus improving overall prediction performance and reliability.</jats:p>
-
Consumer neuroscience analyzes individuals’ preferences through the assessment of physiological data monitoring, considering brain activity or other bioinformation to assess purchase decisions. Traditional marketing tactics include customer surveys, product evaluations, and comments. For product or brand marketing and mass production, it is important to understand consumer neurological responses when seeing an ad or testing a product. In this work, we use the bi-clustering method to reduce EEG noise and automatic machine learning to classify brain responses. We analyze a neuromarketing EEG dataset that contains EEG data from product evaluations from 25 participants, collected with a 14 channel Emotiv Epoch + device, while examining consumer items. Four components comprised the research methodology. Initially, the Welch Transform was used to filter the EEG raw data. Second, the best converted signal biclusterings are used to train different classification models. Each biclustering is evaluated with a separate classifier, considering F1-Score. After that, the H2O.ai AutoML library is used to select the optimal biclustering and models. Instead of traditional procedures, two thresholds are used. First-threshold values indicate customer satisfaction. Low values of the second threshold reflect consumer dissatisfaction. Values between the first and second criteria are classified as uncertain values. We outperform the state of the art with a 0.95 F1-Score value.
-
<jats:p>Detecting emotions is a growing field aiming to comprehend and interpret human emotions from various data sources, including text, voice, and physiological signals. Electroencephalogram (EEG) is a unique and promising approach among these sources. EEG is a non-invasive monitoring technique that records the brain’s electrical activity through electrodes placed on the scalp’s surface. It is used in clinical and research contexts to explore how the human brain responds to emotions and cognitive stimuli. Recently, its use has gained interest in real-time emotion detection, offering a direct approach independent of facial expressions or voice. This is particularly useful in resource-limited scenarios, such as brain–computer interfaces supporting mental health. The objective of this work is to evaluate the classification of emotions (positive, negative, and neutral) in EEG signals using machine learning and deep learning, focusing on Graph Convolutional Neural Networks (GCNN), based on the analysis of critical attributes of the EEG signal (Differential Entropy (DE), Power Spectral Density (PSD), Differential Asymmetry (DASM), Rational Asymmetry (RASM), Asymmetry (ASM), Differential Causality (DCAU)). The electroencephalography dataset used in the research was the public SEED dataset (SJTU Emotion EEG Dataset), obtained through auditory and visual stimuli in segments from Chinese emotional movies. The experiment employed to evaluate the model results was “subject-dependent”. In this method, the Deep Neural Network (DNN) achieved an accuracy of 86.08%, surpassing SVM, albeit with significant processing time due to the optimization characteristics inherent to the algorithm. The GCNN algorithm achieved an average accuracy of 89.97% in the subject-dependent experiment. This work contributes to emotion detection in EEG, emphasizing the effectiveness of different models and underscoring the importance of selecting appropriate features and the ethical use of these technologies in practical applications. The GCNN emerges as the most promising methodology for future research.</jats:p>
-
The scientific literature indicates that pregnant women with COVID-19 are at an increased risk for developing more severe illness conditions when compared with non-pregnant women. The risk of admission to an ICU (Intensive Care Unit) and the need for mechanical ventilator support is three times higher. More significantly, statistics indicate that these patients are also at 70% increased risk of evolving to severe states or even death. In addition, other previous illnesses and age greater than 35 years old increase the risk for the mother and the fetus, including a higher number of cesarean sections, higher systolic and diastolic maternal blood pressure, increasing the risk of eclampsia, and, in some cases, preterm birth. Additionally, pregnant women have more Emotional lability/fluctuations (between positive and negative feelings) during the entire pregnancy. The emotional instability and brain fog that takes place during gestation may open vulnerability for neuropsychiatric symptoms of long COVID, which this population was not studied in depth. The present Chapter characterizes the database presented in this work with clinical and survey data collected about emotions and feelings using the Coronavirus Perinatal Experiences—Impact Survey (COPE-IS). Pregnant women with or without COVID-19 symptoms who gave birth at the Assis Chateaubriand Maternity Hospital (MEAC), a public maternity of the Federal University of Ceara, Brazil, were recruited. In total, 72 mother-infant dyads were included in the study and are considered in this exploratory analysis. The participants have undergone serological tests for SARS-CoV-2 antibody detection and a nasopharyngeal swab test for COVID-19 diagnoses by RT-PCR. A comprehensive Exploratory Data Analysis (EDA) is performed using frequency distribution analysis of multiple types of variables generated from numerical data, multiple-choice, categorized, and Likert-scale questions.
-
This work provides a comprehensive systematic review of optimization techniques using artificial intelligence (AI) for energy storage systems within renewable energy setups. The primary goals are to evaluate the latest technologies employed in forecasting models for renewable energy generation, load forecasting, and energy storage systems, alongside their construction parameters and optimization methods. The review highlights the progress achieved, identifies current challenges, and explores future research directions. Despite the extensive application of machine learning (ML) and deep learning (DL) in renewable energy generation, consumption patterns, and storage optimization, few studies integrate these three aspects simultaneously, underscoring the significance of this work. The review encompasses studies from Web of Science, Scopus, and Science Direct up to December 2023, including works scheduled for publication in 2024. Each study related to renewable energy storage was individually analyzed to assess its objectives, methodology, and results. The findings reveal useful insights for developing AI models aimed at optimizing storage systems. However, critical areas need further exploration, such as real-time forecasting, long-term storage predictions, hybrid neural networks for demand-based generation forecasting, and the evaluation of various storage scales and battery technologies. The review also notes a significant gap in research on large-scale storage systems in Brazil and Latin America. In conclusion, the study emphasizes the need for continued research and the development of new algorithms to address existing limitations in the field.
-
The visual analysis of cardiotocographic examinations is a very subjective process. The accurate detection and segmentation of the fetal heart rate (FHR) features and their correlation with the uterine contractions in time allow a better diagnostic and the possibility of anticipation of many problems related to fetal distress. This paper presents a computerized diagnostic aid system based on digital signal processing techniques to detect and segment changes in the FHR and the uterine tone signals automatically. After a pre-processing phase, the FHR baseline detection is calculated. An auxiliary signal called detection line is proposed to support the detection and segmentation processes. Then, the Hilbert transform is used with an adaptive threshold for identifying fiducial points on the fetal and maternal signals. For an antepartum (before labor) database, the positive predictivity value (PPV) is 96.80% for the FHR decelerations, and 96.18% for the FHR accelerations. For an intrapartum (during labor) database, the PPV found was 91.31% for the uterine contractions, 94.01% for the FHR decelerations, and 100% for the FHR accelerations. For the whole set of exams, PPV and SE were both 100% for the identification of FHR DIP II and prolonged decelerations.
-
The adoption of computer-aided diagnosis and treatment systems based on different types of artificial neural networks (ANNs) is already a reality in several hospital and ambulatory premises. This chapter aims to present a discussion focused on the challenges and trends of adopting these computerized systems, highlighting solutions based on different types and approaches of ANN, more specifically, feed-forward, recurrent, and deep convolutional architectures. One section is focused on the application of AI/ANN solutions to support cardiology in different applications, such as the classification of the heart structure and functional behavior based on echocardiography images; the automatic analysis of the heart electric activity based on ECG signals; and the diagnosis support of angiogram images during surgical interventions. Finally, a case study is presented based on the application of a deep learning convolutional network together with a recent technique called transfer learning to detect brain tumors using an MRI images data set. According to the findings, the model has a high degree of specificity (precision of 0.93 and recall of 0.94 for images with no brain tumor) and can be used as a screening tool for images that do not contain a brain tumor. The f1-score for images with brain tumor was 0.93. The results achieved are very promising and the proposed solution may be considered to be used as a computer-aided diagnosis tool based on deep learning convolutional neural networks. Future works will consider other techniques and compare them with the one presented here. With the comprehensive approach and overview of multiple applications, it is valid to conclude that computer-aided diagnosis and treatment systems are important tools to be considered today and will be an essential part of the trend of personalized medicine over the coming years.
-
The area of clinical decision support systems (CDSS) is facing a boost in research and development with the increasing amount of data in clinical analysis together with new tools to support patient care. This creates a vibrant and challenging environment for the medical and technical staff. This chapter presents a discussion about the challenges and trends of CDSS considering big data and patient-centered constraints. Two case studies are presented in detail. The first presents the development of a big data and AI classification system for maternal and fetal ambulatory monitoring, composed by different solutions such as the implementation of an Internet of Things sensors and devices network, a fuzzy inference system for emergency alarms, a feature extraction model based on signal processing of the fetal and maternal data, and finally a deep learning classifier with six convolutional layers achieving an F1-score of 0.89 for the case of both maternal and fetal as harmful. The system was designed to support maternal–fetal ambulatory premises in developing countries, where the demand is extremely high and the number of medical specialists is very low. The second case study considered two artificial intelligence approaches to providing efficient prediction of infections for clinical decision support during the COVID-19 pandemic in Brazil. First, LSTM recurrent neural networks were considered with the model achieving R2=0.93 and MAE=40,604.4 in average, while the best, R2=0.9939, was achieved for the time series 3. Second, an open-source framework called H2O AutoML was considered with the “stacked ensemble” approach and presented the best performance followed by XGBoost. Brazil has been one of the most challenging environments during the pandemic and where efficient predictions may be the difference in saving lives. The presentation of such different approaches (ambulatory monitoring and epidemiology data) is important to illustrate the large spectrum of AI tools to support clinical decision-making.
-
This paper presents an algorithm that applies metrics derived from automatic QRS detection and segmentation in electrocardiogram signals for analyzing Heart Rate Variability to study the evolution of metrics in the frequency domain of a clinical procedure. The analysis was performed on three sets of elderly people, who are categorized according to frailty phenotype. The first set was comprised of frail elderly, the second pre-frail elderly, and the third robust elderly. Investigators from many disciplines have been encouraged to contribute to the understanding of molecular and physiological changes in multiple systems that may increase the vulnerability of frail elderly. In this work, the frailty phenotype can be characterized by unintentional weight loss, as self-reported, fatigue assessed by self-report, grip strength (measured directly), physical activity level assessed by self-report and gait speed (measured). The results obtained demonstrate the existence of significant differences between Heart Rate Variability metrics for the three groups, especially considering a higher preponderance for sympathetic nervous system for the group of robust patients in response to postural maneuver.
-
Continuous cardiac monitoring has been increasingly adopted to prevent heart diseases, especially the case of Chagas disease, a chronic condition that can degrade the heart condition, leading to sudden cardiac death. Unfortunately, a common challenge for these systems is the low-quality and high level of noise in ECG signal collection. Also, generic techniques to assess the ECG quality can discard useful information in these so-called chagasic ECG signals. To mitigate this issue, this work proposes a 1D CNN network to assess the quality of the ECG signal for chagasic patients and compare it to the state of art techniques. Segments of 10 s were extracted from 200 1-lead ECG Holter signals. Different feature extractions were considered such as morphological fiducial points, interval duration, and statistical features, aiming to classify 400 segments into four signal quality types: Acceptable ECG, Non-ECG, Wandering Baseline (WB), and AC Interference (ACI) segments. The proposed CNN architecture achieves a $$0.90 \pm 0.02$$accuracy in the multi-classification experiment and also $$0.94 \pm 0.01$$when considering only acceptable ECG against the other three classes. Also, we presented a complementary experiment showing that, after removing noisy segments, we improved morphological recognition (based on QRS wave) by 33% of the entire ECG data. The proposed noise detector may be applied as a useful tool for pre-processing chagasic ECG signals.
-
The adoption of IoT for smart health applications is a relevant tool for distributed and intelligent automatic diagnostic systems. This work proposes the development of an integrated solution to monitor maternal and fetal signals for high-risk pregnancies based on IoT sensors, feature extraction based on data analytics, and an intelligent diagnostic aid system based on a 1-D convolutional neural network (CNN) classifier. The fetal heart rate and a group of maternal clinical indicators, such as the uterine tonus activity, blood pressure, heart rate, temperature, and oxygen saturation are monitored. Multiple data sources generate a significant amount of data in different formats and rates. An emergency diagnostic subsystem is proposed based on a fog computing layer and the best accuracy was 92.59% for both maternal and fetal emergency. A smart health analytics system is proposed for multiple feature extraction and the calculation of linear and nonlinear measures. Finally, a classification technique is proposed as a prediction system for maternal, fetal, and simultaneous health status classification, considering six possible outputs. Different classifiers are evaluated and a proposed CNN presented the best results, with the F1-score ranging from 0.74 to 0.91. The results are validated based on the diagnosis provided by two specialists. The results show that the proposed system is a viable solution for maternal and fetal ambulatory monitoring based on IoT.
-
Introduction: SARS-CoV-2, a virus responsible for the emergence of the life-threatening disease known as COVID-19, exhibits a diverse range of clinical manifestations. The spectrum of symptoms varies widely, encompassing mild to severe presentations, while a considerable portion of the population remains asymptomatic. COVID-19, primarily a respiratory virus, has been linked to cardiovascular complications in some patients. Notably, cardiac issues can also arise after recovery, contributing to post-acute COVID-19 syndrome, a significant concern for patient health. The present study intends to evaluate the post-acute COVID-19 syndrome cardiovascular effect through ECG by comparing patients affected with cardiac diseases without COVID-19 diagnosis report (class 1) and patients with cardiac pathologies who present post-acute COVID-19 syndrome (class 2). Methods: From 2 body positions, a total of 10 non-linear features, extracted every 1 second under a multi-band analysis performed by Discrete Wavelet Transform (DWT), have been compressed by 6 statistical metrics to serve as inputs for an individual feature analysis by the means of Mann-Whitney U-test and XROC classification. Results and Discussion: 480 Mann-Whitney U-test statistical analyses and XROC discrimination approaches have been done. The percentage of statistical analysis with significant differences (p<0.05) was 30.42% (146 out of 480). The best overall results were obtained by approximating the feature Energy, with the data compressor Kurtosis in the body position Down. Those results were 83.33% of Accuracy, 83.33% of Sensitivity, 83.33% of Specificity and 87.50% of AUC. Conclusions: The results show that the applied methodology can be a way to show changes in cardiac behaviour provoked by post-acute COVID-19 syndrome.
-
Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.
-
Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms. Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19 Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification scenarios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All vs. All). Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of F1–Score; (2) Low vs. Severe - Accuracy of 91.67% and an F1–Score of 94.92%; (3) Moderate vs. Severe - Accuracy of 94.12% and an F1–Score of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of F1–Score. Conclusion: The results indicate that the applied methodology could be considered a good tool for distinguishing COVID-19’s different severity stages using ECG signals. Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination. In comparison to previous studies using the same database, this study shows a 7.57% improvement in diagnostic accuracy for the All vs All comparison.
-
Following the World Health Organization proclaims a pandemic due to a disease that originated in China and advances rapidly across the globe, studies to predict the behavior of epidemics have become increasingly popular, mainly related to COVID-19. The critical point of these studies is to discuss the disease's behavior and the progression of the virus's natural course. However, the prediction of the actual number of infected people has proved to be a difficult task, due to a wide range of factors, such as mass testing, social isolation, underreporting of cases, among others. Therefore, the objective of this work is to understand the behavior of COVID-19 in the state of Ceará to forecast the total number of infected people and to aid in government decisions to control the outbreak of the virus and minimize social impacts and economics caused by the pandemic. So, to understand the behavior of COVID-19, this work discusses some forecast techniques using machine learning, logistic regression, filters, and epidemiologic models. Also, this work brings a new approach to the problem, bringing together data from Ceará with those from China, generating a hybrid dataset, and providing promising results. Finally, this work still compares the different approaches and techniques presented, opening opportunities for future discussions on the topic. The study obtains predictions with R2 score of 0.99 to short-term predictions and 0.93 to long-term predictions.
-
Objetivo: Explorar a aplicação de inteligência artificial (IA) na predição da idade óssea a partir de imagens de raios-X. Método: Utilizou-se a Metodologia Interdisciplinar para o Desenvolvimento de Tecnologias em Saúde (MIDTS) para desenvolver uma ferramenta de predição. O treinamento foi realizado com redes neurais convolucionais (CNNs) usando um conjunto de dados de 14.036 imagens de raios-X. Resultados: A ferramenta alcançou um coeficiente de determinação (R²) de 0,94807 e um Erro Médio Absoluto (MAE) de 6,97, destacando sua precisão e potencial de aplicação clínica. Conclusão: O projeto demonstrou grande potencial para aprimorar a predição da idade óssea, com possibilidades de evolução conforme a base de dados aumenta e a IA se torna mais sofisticada.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(100)
- Alexandre Lobo (100)
- Douty Diakite (1)
- Emil Marques (1)
- Ivan Arraut (3)
- Jenny Phillips (1)
- Sergio Gomes (2)
- Silva, Susana C. (1)
-
Institute for Data Engineering and Sciences
(2)
- George Du Wencai (2)
Resource type
- Book (3)
- Book Section (33)
- Conference Paper (17)
- Journal Article (41)
- Preprint (2)
- Presentation (6)
- Thesis (19)
United Nations SDGs
Student Research and Output
Publication year
- Between 2000 and 2025 (120)
- Unknown (1)