Your search

Results 252 resources

  • In government studies, electronic government has become a hot topic in recent decades. Many scholars believe that soon, the government might not be able to operate smoothly without the help of ICTs as the Internet has been overwhelming people's daily lives already. In analyzing people's behavioral factors towards adopting e-government services, most studies targeted the adult population, while those in the hard-to-reach groups are minimal. This study was designed especially to understand the behavioral factors of the younger generation aged between 18 and 24 and the senior citizens above 60 on their adoption of e-government services in Macao SAR. Sixteen in-depth interviews were conducted based on the semi-structured interview questions developed from the prior literature on the Theory of Planned Behavior and e-government studies. Six significant findings are yielded, which could serve as an important reference for policymakers designing e-government policy and promoting its implementation strategy. These behavioral factors also contribute empirical data to support the theoretical framework of TPB in the context of Macao SAR e-government services.

  • Hydrothermal activity on mid-ocean ridges is an important mechanism for the delivery of Zn from the mantle to the surface environment. Zinc isotopic fractionation during hydrothermal activity is mainly controlled by the precipitation of Zn-bearing sulfide minerals, in which isotopically light Zn is preferentially retained in solid phases rather than in solution during mineral precipitation. Thus, seafloor hydrothermal activity is expected to supply isotopically heavy Zn to the ocean. Here, we studied sulfide-rich samples from the Duanqiao-1 hydrothermal field, located on the Southwest Indian Ridge. We report that, at the hand-specimen scale, late-stage conduit sulfide material has lower δ66Zn values (−0.05 ± 0.15 ‰; n = 19) than early-stage material (+0.13 ± 0.15 ‰; n = 10). These lower values correlate with enrichments in Pb, As, Cd, and Ag, and elevated δ34S values. We attribute the low δ66Zn values to the remobilization of earlier sub-seafloor Zn-rich mineralization. Based on endmember mass balance calculations, and an assumption of a fractionation factor (αZnS-Sol.) of about 0.9997 between sphalerite and its parent solution, the remobilized Zn was found consist of about 1/3 to 2/3 of the total Zn in the fluid that formed the conduit samples. Our study suggests that late-stage subsurface hydrothermal remobilization may release isotopically-light Zn to the ocean, and that this process may be common along mid-ocean ridges, thus increasing the size of the previously identified isotopically light Zn sink in the ocean.

  • Anthropogenic noise of variable temporal patterns is increasing in aquatic environments, causing physiological stress and sensory impairment. However, scarce information exists on exposure effects to continuous versus intermittent disturbances, which is critical for noise sustainable management. We tested the effects of different noise regimes on the auditory system and behaviour in the zebrafish (Danio rerio). Adult zebrafish were exposed for 24 h to either white noise (150 ± 10 dB re 1 μPa) or silent control. Acoustic playbacks varied in temporal patterns—continuous, fast and slow regular intermittent, and irregular intermittent. Auditory sensitivity was assessed with Auditory Evoked Potential recordings, revealing hearing loss and increased response latency in all noise-treated groups. The highest mean threshold shifts (c. 13 dB) were registered in continuous and fast intermittent treatments, and no differences were found between regular and irregular regimes. Inner ear saccule did not reveal significant hair cell loss but showed a decrease in presynaptic Ribeye b protein especially after continuous exposure. Behavioural assessment using the standardized Novel Tank Diving assay showed that all noise-treated fish spent > 98% time in the bottom within the first minute compared to 82% in control, indicating noise-induced anxiety/stress. We provide first data on how different noise time regimes impact a reference fish model, suggesting that overall acoustic energy is more important than regularity when predicting noise effects.

  • Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2–GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.

  • Despite the levels of air pollution in Macao continuing to improve over recent years, there are still days with high-pollution episodes that cause great health concerns to the local community. Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5) concentrations in Macao. The forecast models were built and trained using the meteorological and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for validation. Our results show that there is no significant difference between the performance of the four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021 (the new normal period). However, RF performed significantly better than the other methods for 2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE, and BIAS. The reduced performance of the statistical MLR and other ML models was presumably due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by a widespread infectious disease.

  • Despite the levels of air pollution in Macao continuing to improve over recent years, there are still days with high-pollution episodes that cause great health concerns to the local community. Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5) concentrations in Macao. The forecast models were built and trained using the meteorological and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for validation. Our results show that there is no significant difference between the performance of the four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021 (the new normal period). However, RF performed significantly better than the other methods for 2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE, and BIAS. The reduced performance of the statistical MLR and other ML models was presumably due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by a widespread infectious disease.

  • Ligand peptides that have high affinity for ion channels are critical for regulating ion flux across the plasma membrane. These peptides are now being considered as potential drug candidates for many diseases, such as cardiovascular disease and cancers. In this work, we developed Multi-Branch-CNN, a CNN method with multiple input branches for identifying three types of ion channel peptide binders (sodium, potassium, and calcium) from intra- and inter-feature types. As for its real-world applications, prediction models that are able to recognize novel sequences having high or low similarities to training sequences are required. To this end, we tested our models on two test sets: a general test set including sequences spanning different similarity levels to those of the training set, and a novel-test set consisting of only sequences that bear little resemblance to sequences from the training set. Our experiments showed that the Multi-Branch-CNN method performs better than thirteen traditional ML algorithms (TML13), yielding an improvement in accuracy of 3.2%, 1.2%, and 2.3% on the test sets as well as 8.8%, 14.3%, and 14.6% on the novel-test sets for sodium, potassium, and calcium ion channels, respectively. We confirmed the effectiveness of Multi-Branch-CNN by comparing it to the standard CNN method with one input branch (Single-Branch-CNN) and an ensemble method (TML13-Stack). The data sets, script files to reproduce the experiments, and the final predictive models are freely available at https://github.com/jieluyan/Multi-Branch-CNN.

  • The geochemistry and mineralogy of sediments provide relevant information for the understanding of the origin and metallogenic mechanism of ferromanganese nodules and crusts. At present, there are still few studies on the sediment origin of the Clarion–Clipperton Zone (CCZ) of the east Pacific, particularly on the systematic origin of sediments with a longer history/length. Here, bulk sediment geochemistry and clay mineral compositions were analyzed on a 5.7 m gravity core (GC04) obtained at the CCZ, an area rich in polymetallic nodules. The results indicate that the average total content of rare earth elements (REE), including yttrium (REY), in sediments is 454.7 ppm and the REEs distribution patterns normalized by the North American Shale Composite of samples are highly consistent, with all showing negative Ce anomalies and more obvious enrichment in heavy REE (HREE) than that of light REE (LREE). Montmorillonite/illite ratio, discriminant functions and smear slide identification indicate multiple origins for the material, and are strongly influenced by contributions from marine biomass, while terrestrial materials, seamount basalts and their alteration products and authigenic source also make certain contributions. The REY characteristics of the sediments in the study area are different from those of marginal oceanic and back-arc basins, and more similar to pelagic deep-sea sediments. Based on LREE/HREE-1/δCe and LREE/HREE-Y/Ho diagrams, we conclude that samples from the study area had pelagic sedimentary properties which suffered from a strong “seawater effect”.

  • Stock movement prediction is one of the most challenging problems in time series analysis due to the stochastic nature of financial markets. In recent years, a plethora of statistical methods and machine learning algorithms were proposed for stock movement prediction. Specifically, deep learning models are increasingly applied for the prediction of stock movement. The success of deep learning models relies on the assumption that massive training data are available. However, this assumption is impractical for stock movement prediction. In stock markets, a large number of stocks do not have enough historical data, especially for the companies which underwent initial public offering in recent years. In these situations, the accuracy of deep learning models to predict the stock movement could be affected. To address this problem, in this paper, we propose novel instance-based deep transfer learning models with attention mechanism. In the experiments, we compare our proposed methods with state-of-the-art prediction models. Experimental results on three public datasets reveal that our proposed methods significantly improve the performance of deep learning models when limited training data are available.

  • Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75–3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.

  • Hydrothermal activities on ultraslow-spreading ridges exhibit diverse characteristics, long histories with multiple participants, and might form large-scale, high-grade sulfide deposits. The Duanqiao hydrothermal field (DHF) is located at the segment with the thickest oceanic crust and a large axial magma chamber on the Southwest Indian Ridge, providing unique perspective of sulfide metallogenesis on ultraslow-spreading ridges. Previous studies revealed that DHF sulfide exhibits distinct features of enrichment of ore-forming elements in comparison with those of hydrothermal fields on sediment-starved mid-ocean ridges. However, the genesis and processes responsible for such differences remain poorly constrained. In this study, mineralogical, geochemical and S and Pb isotopic analyses were performed on relict sulfide mound samples to characterize DHF formation. The samples show clear concentric mineral zonation from the interior to the exterior wall. Assemblages of chalcopyrite, sphalerite, and pyrite are distributed mainly in the interior wall, whereas pyrite and marcasite are distributed mainly in the exterior wall. The low Cu content and Pb isotopic composition of the sulfide indicate that the metals are derived mainly from basement basalts. The δ34S values exhibit positive values distributed over a reasonably narrow range (2.42‰–7.97‰), which suggests approximately 62.1%–88.5% of S with basaltic origin. Compared with most hydrothermal fields along the sediment starved mid-ocean ridges, the DHF sulfide shows particularly high contents of Pb (263–2630 ppm), As (234–726 ppm), Sb (7.32–44.3 ppm), and Ag (35.2 to >100 ppm). The δ34S values exhibit an increasing tendency from the sample exterior to the interior. We propose that these features probably reflect the existence of a subsurface zone refining process. Our results provide new insight into the sulfide formation process and contribute to understanding the metallogenic mechanism of hydrothermal sulfides on ultraslow-spreading ridges.

  • Since the launch of the One Belt and One Road Initiative (BRI) in 2013, the internationalisation of China’s tertiary education has entered a new stage. Central to the BRI is investment and strategic planning for talent cultivation, knowledge production, and transmission. This paper explains how the BRI redirects, reinforces, and intensifies China’s strategic planning and actions for internationalising its education. It adopts a policy analysis approach and reviews three key aspects of development and shifting emphasis of internationalisation under the impact of the BRI: international education networks along the Six BRI Economic Corridors, vocational colleges as new players in international education, and promotion of the Chinese language as a new global language. The analysis captures an important moment in which international education processes are being visibly altered through China’s strategies to take the lead in economic globalisation and to compete for a central place in the world via the BRI.

  • In this essay, we put forth a novel solution to Plantinga’s Evolutionary Argument Against Naturalism, utilizing recent work done by Duncan Pritchard on radical skepticism. Key to the success of Plantinga’s argument is the doubting of the reliability of one’s cognitive faculties. We argue (viz. Pritchard and Wittgenstein) that the reliability of one’s cognitive faculties constitutes a hinge commitment, thus is exempt from rational evaluation. In turn, the naturalist who endorses hinge epistemology can deny the key premise in Plantinga’s argument and avoid the dilemma posed on belief in the conjunction of naturalism and evolution.

  • Convolutional neural network (CNN) model based on deep learning has excellent performance for target detection. However, the detection effect is poor when the object is circular or tubular because most of the existing object detection methods are based on the traditional rectangular box to detect and recognize objects. To solve the problem, we propose the circular representation structure and RepVGG module on the basis of CenterNet and expand the network prediction structure, thus proposing a high-precision and high-efficiency lightweight circular object detection method RebarDet. Specifically, circular tubular type objects will be optimized by replacing the traditional rectangular box with a circular box. Second, we improve the resolution of the network feature map and the upper limit of the number of objects detected in a single detect to achieve the expansion of the network prediction structure, optimized for the dense phenomenon that often occurs in circular tubular objects. Finally, the multibranch topology of RepVGG is introduced to sum the feature information extracted by different convolution modules, which improves the ability of the convolution module to extract information. We conducted extensive experiments on rebar datasets and used AB-Score as a new evaluation method to evaluate RebarDet. The experimental results show that RebarDet can achieve a detection accuracy of up to 0.8114 and a model inference speed of 6.9 fps while maintaining a moderate amount of parameters, which is superior to other mainstream object detection models and verifies the effectiveness of our proposed method. At the same time, RebarDet’s high precision detection of round tubular objects facilitates enterprise intelligent manufacturing processes.

  • Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including investigations of developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post-fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition (PPI) paradigm at 5 dpf. Noise-exposed larvae showed a significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while the PPI revealed a hypersensitization effect and a similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure–function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.

  • Objective. As the preclinical stage of Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI) is characterized by hidden onset, which is difficult to detect early. Traditional neuropsychological scales are main tools used for assessing MCI. However, due to its strong subjectivity and the influence of many factors such as subjects’ educational background, language and hearing ability, and time cost, its accuracy as the standard of early screening is low. Therefore, the purpose of this paper is to propose a new key technology of fast digital early warning for MCI based on eye movement objective data analysis. Methodology. Firstly, four exploratory indexes (test durations, correlation degree, lengths of gaze trajectory, and drift rate) of MCI early warning are determined based on the relevant literature research and semistructured expert interview; secondly, the eye movement state is captured based on the eye tracker to realize the data extraction of four exploratory indexes. On this basis, the human-computer interactive 2.5-minute fast digital early warning paradigm for MCI is designed; thirdly, the rationality of the four early warning indexes proposed in this paper and their early warning effectiveness on MCI are verified. Results. Through the small sample test of human-computer interactive 2.5 fast digital early warning paradigm for MCI conducted by 32 elderly people aged 70–90 in a medical institution in Hangzhou, the two indexes of “correlation degree” and “drift rate” with statistical differences are selected. The experiment results show that AUC of this MCI early warning paradigm is 0.824. Conclusion. The key technology of human-computer interactive 2.5 fast digital early warning for MCI proposed in this paper overcomes the limitations of the existing MCI early warning tools, such as low objectification level, high dependence on professional doctors, long test time, requiring high educational level, and so on. The experiment results show that the early warning technology, as a new generation of objective and effective digital early warning tool, can realize 2.5-minute fast and high-precision preliminary screening and early warning for MCI in the elderly.

Last update from database: 10/3/22, 1:24 AM (UTC)