Your search

Resource type

Results 63 resources

  • Purpose Research on battery electric vehicles (BEVs) has typically considered environmental concern a key determinant of behavioral intention that leads individuals to prefer electric vehicles. This paper challenges this assumption and argues that technology frameworks may require new variables to capture consumers' preferences. A UTAUT2-based study has been developed to assess the role of environmental concern in the BEVs context and put forward the technology show-off (TS) concept to explain the technology's acceptance. Design/methodology/approach A quantitative and cross-sectional look at behavioral intention is adopted. The study uses structural equation modeling to analyze a sample of 236 Macau residents to determine the relevance of the factors behind the choice to adopt BEVs. Findings The findings indicate that environmental concern and price may be relevant to explain behavioral intention to adopt the BEVs technology. Furthermore, the UTAUT2 framework seems to benefit from adding new variables, with TS playing a pertinent role in explaining technology acceptance. Social implications The findings show that environmental concern fails to build an argument for the shift to full electric mobility and promote the desired behavioral change toward adopting BEVs. Herein lies the necessity to consider new variables that can better describe the characteristics of modern society. Originality/value This paper proposes the TS construct, combining visibility and trialability as significant determinants of behavioral intention to use technology. The study also stresses the need to reconsider the role of environmental concerns' impact on consumer decision-making.

  • We prove the consistency of the different approaches for deriving the black hole radiation for the spherically symmetric case inside the theory of Massive Gravity. By comparing the results obtained by using the Bogoliubov transformations with those obtained by using the Path Integral formulation, we find that in both cases, the presence of the extra-degrees of freedom creates the effect of extra-particles creation due to the distortions on the definitions of time defined by the different observers at large scales. This, however, does not mean extra-particle creation at the horizon level. Instead, the apparent additional particles perceived at large scales emerge from how distant observers define their time coordinate, which is distorted due to the existence of extra-degrees of freedom.

  • Consumers' selections and decision-making processes are some of the most exciting and challenging topics in neuromarketing, sales, and branding. From a global perspective, multicultural influences and societal conditions are crucial to consider. Neuroscience applications in international marketing and consumer behavior is an emergent and multidisciplinary field aiming to understand consumers' thoughts, reactions, and selection processes in branding and sales. This study focuses on real-time monitoring of different physiological signals using eye-tracking, facial expressions recognition, and Galvanic Skin Response (GSR) acquisition methods to analyze consumers' responses, detect emotional arousal, measure attention or relaxation levels, analyze perception, consciousness, memory, learning, motivation, preference, and decision-making. This research aimed to monitor human subjects' reactions to these signals during an experiment designed in three phases consisting of different branding advertisements. The nonadvertisement exposition was also monitored while gathering survey responses at the end of each phase. A feature extraction module with a data analytics module was implemented to calculate statistical metrics and decision-making supporting tools based on Principal Component Analysis (PCA) and Feature Importance (FI) determination based on the Random Forest technique. The results indicate that when compared to image ads, video ads are more effective in attracting consumers' attention and creating more emotional arousal.

  • This paper examines the extent to which China’s aid policies integrate poverty alleviation as a goal of their aid in general, particularly in Guinea. More specifically, the paper analyzed how aid donors focus on poverty alleviation and which policies and mechanisms are in place to address poverty in the countries receiving aid. Regarding the methodology, the author collected data from secondary sources, including government declarations of donors, policy documents at both the donor and recipient levels, as well as from scholarly publications. The following findings resulted from study:  China’s aid policies have progressively incorporated poverty alleviationobjectives and identified sectors for intervention against poverty. However, the limitations of China approach to poverty is that China adopts a top-down approach to poverty reduction and lacks of an impact evaluation mechanism based on poverty alleviation.

  • This article discusses the new gaming law in Macau with emphasis on the critical aspects concerning the gaming operators, concession regime, and other regulatory obligations.1 Thanks to the gaming liberalization commenced in 2001,2 Macau has experienced tremendous economic growth. The past two decades have seen the rapid development of large-scale integrated resorts, and Macau now ranks among the world's major gaming jurisdictions.3 Policy and regulatory challenges have also emerged along with the growth of the junket-driven VIP business in casinos.4 With the recent amendment of Law No. 16/2001 and the subsequent enactment of Law No. 16/2022, Macau has strengthened the legal underpinnings of its system of gaming regulation to oversee various groups involved in casinos and their industry practices. The present study is among the first to review the scope and impact of the revised gaming law, and associated managerial and operational implications for Macau casinos. Topics covered include policy directions, concession requirements, industry participants, gaming taxes, and fair business practices. This study could provide insights into the “Macau 2.0” project and how casinos are to be operated and managed over the next decade. This article could also provide practical guidance for policy makers charged with formulating gaming policy and regulation in other jurisdictions.

  • Macau has long been considered to be an example of remarkable economic growth. With the opening of the gaming sector in 2002, the casino and hospitality sector flourished, creating employment opportunities but also imposing several challenges on managers. Since Macau endeavors to be positioned as the center for international business with Portuguese-speaking countries and a platform for trading with China’s Greater Bay Area (GBA), it becomes essential for international enterprises to understand the local dynamics. In light of the limited research available, this study aims to identify management challenges from the perspectives of senior executives in different industries based in Macau. Our findings point out that managers must contend with several issues, such as the lack of a skilled local talent pool, high turnover rates, employees' work attitudes, and a tightly controlled immigration policy. It is also imperative for international managers to nurture relationships and pay attention to the local culture. Our results suggest that Macau has to develop a highly skilled local workforce to attract international companies, while local organizations also have to create an attractive working environment to compete in the marketplace.

  • The adoption of project management techniques is a crucial decision for corporate governance in construction companies since the management of areas such as risk, cost, and communications is essential for the success or failure of an endeavor. Nevertheless, different frameworks based on traditional or agile methodologies are available with several approaches, which may create several ways to manage projects. The primary purpose of this work is to investigate the adequate project management methodology for the construction industry from a general perspective and consider a case study from Macau. The methodology considered semi-structured interviews and a survey comparing international and local project managers from the construction industry. The interviews indicate that most construction project managers still follow empirical methods with no specific methodology but consider the adoption of traditional waterfall approaches. In contrast, according to the survey, most project managers and construction managers agree that the project's efficacy needs to increase, namely in planning, waste minimization, communication increase, and focus on the Client's feedback. In addition, there seems to be a clear indication that agile methodology could be implemented in several types of projects, including hospitality development projects. A hybrid development approach based on the Waterfall and Agile methodologies as a tool for the project management area may provide a more suitable methodology for project managers to follow.

  • Objective: Over the past decade, arbitration has grown in popularity as a method of resolving commercial disputes worldwide. However, this practice is relatively new in Macao SAR. Recently, official plans were announced to make Macao as a seat of arbitration for commercial disputes between China and Portuguese-speaking countries (Hereinafter PSCs). This article is dedicated to explores the possibility of Macao undertaking and implementing such a role. Accordingly, this article addresses the following issues: What are the strengths and weaknesses of Macao as a seat and eventually as venue for hosting international commercial arbitration between Chinese and PSCs entrepreneurs?Methodology: A mixed-method approach of legal doctrinal and empirical research was used in this article. We first included a thorough study of the concept of arbitration followed by analysis of various legal journals and legislations, including Macao, China, and PSCs’ arbitration laws. An empirical research was then used to collect data by surveying and interviewing with both lawyers and arbitration practitioners from Macao, China and PSCs.Results: This article argues that the strength of Macao resides in the similarities between its legal system and that of the China and PSCs and the languages advantage (Chinese and Portuguese both official languages). In spite of this, arbitration is still relatively underutilized in the region, and there is a limited number of arbitrators and legal professionals with bilingual proficiency.Contributions: This article contributes to the identification of the opportunities and challenges that Macao faces in its potential future development as a seat/venue of arbitration between China and the PSCs.

  • Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.

  • Electronic government is increasingly dominant in the study of public administration. In analysing people's behavioural factors towards the adoption of e-services, most previous studies targeted the adult population, while those on government employees are minimal. Government employees have an essential function in the process of government operation; they can be regarded as the principal medium of communication between the service provider (government) and the end-users (citizens). This study was designed to understand the government employees' behavioural factors on their intentions towards adopting e-government services. A set of semi-structured interview questions was developed based on the prior literature on the Theory of Planned Behaviour (TPB) and e-government studies. Ten in-depth interviews were conducted in Macao SAR (Special Administrative Region). In addition to analysing the three primary constructs of TPB, the factor of Trust and some enablers and hindrances were identified. Significant findings were yielded while investigating how the government employees perceived the e-services and how they regarded the general public's perception of this issue. This contextualisation would help policymakers look at this issue from different perspectives and design feasible interventions according to group alignment strategies.

  • <abstract><p>About 6.5 million people are infected with Chagas disease (CD) globally, and WHO estimates that $ &gt; million people worldwide suffer from ChHD. Sudden cardiac death (SCD) represents one of the leading causes of death worldwide and affects approximately 65% of ChHD patients at a rate of 24 per 1000 patient-years, much greater than the SCD rate in the general population. Its occurrence in the specific context of ChHD needs to be better exploited. This paper provides the first evidence supporting the use of machine learning (ML) methods within non-invasive tests: patients' clinical data and cardiac restitution metrics (CRM) features extracted from ECG-Holter recordings as an adjunct in the SCD risk assessment in ChHD. The feature selection (FS) flows evaluated 5 different groups of attributes formed from patients' clinical and physiological data to identify relevant attributes among 57 features reported by 315 patients at HUCFF-UFRJ. The FS flow with FS techniques (variance, ANOVA, and recursive feature elimination) and Naive Bayes (NB) model achieved the best classification performance with 90.63% recall (sensitivity) and 80.55% AUC. The initial feature set is reduced to a subset of 13 features (4 Classification; 1 Treatment; 1 CRM; and 7 Heart Tests). The proposed method represents an intelligent diagnostic support system that predicts the high risk of SCD in ChHD patients and highlights the clinical and CRM data that most strongly impact the final outcome.</p></abstract>

  • Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.

  • In government studies, electronic government has become a hot topic in recent decades. Many scholars believe that soon, the government might not be able to operate smoothly without the help of ICTs as the Internet has been overwhelming people's daily lives already. In analyzing people's behavioral factors towards adopting e-government services, most studies targeted the adult population, while those in the hard-to-reach groups are minimal. This study was designed especially to understand the behavioral factors of the younger generation aged between 18 and 24 and the senior citizens above 60 on their adoption of e-government services in Macao SAR. Sixteen in-depth interviews were conducted based on the semi-structured interview questions developed from the prior literature on the Theory of Planned Behavior and e-government studies. Six significant findings are yielded, which could serve as an important reference for policymakers designing e-government policy and promoting its implementation strategy. These behavioral factors also contribute empirical data to support the theoretical framework of TPB in the context of Macao SAR e-government services.

  • YouTube has become increasingly popular for marketing purposes. As corporate and user-generated content is widely available on this platform, beauty-related professionals need to understand how to create videos that make their products more appealing and stand out from the clutter. In this study, we examine four factors (i.e., perceived usefulness of the information, perceived credibility of the information, attitude toward the purchase, and perceived video characteristics) that affect the purchase intentions of female consumers. After viewing beauty-related videos, a sample of 204 female consumers was analyzed by structural equation modeling. The findings showed that videos with more views, likes, and comments tend to have a greater effect on the respondents' intentions to purchase. Also, the factors of perceived usefulness of the information, perceived credibility of the information, and attitude toward the purchase exhibited a significant effect on the intention to buy beauty-related products. The result showed that perceived video characteristics (such as quality and visuals) did not significantly influence the purchase intention, however, there is evidence that this factor should not be ignored by content creators. Finally, our research provides insights, strategies, and future directions for industry practitioners and marketers.

  • Abstract With its large population and natural resources, Africa needs investors who can sustain its development. At the same time, foreign investors expect returns on their investments. In ...

  • It is argued that the role of the Chinese government to support the cross-border operations of Chinese firms is to assist these firms in overcoming their limited established brands, and their disadvantages in technology and managerial resources, which were also the reasons why such firms decided to enter emerging markets instead of developed markets. This strategic choice is preferred to avoid direct confrontation with established firms from developed countries endowed with superior ownership advantages. Therefore, Chinese resources seeking firms innovate by increasing investment in developing and emerging markets to develop unique ownership advantages for sustainable market development and competitive advantage. This research investigates the ownership advantages of resources seeking Chinese firms in these markets using the OLI theory. The paper contributes to explaining the specific advantages of Chinese MNEs when entering emerging markets. The study applied a two-stage qualitative methodology to examine Chinese firms operating in Nigeria. The first stage included an exploratory study based on interviews with key informants and experts while the second stage included a case study methodology. The study focused on resources seeking Chinese MNEs operating in Nigeria.

  • The adoption of IoT for smart health applications is a relevant tool for distributed and intelligent automatic diagnostic systems. This work proposes the development of an integrated solution to monitor maternal and fetal signals for high-risk pregnancies based on IoT sensors, feature extraction based on data analytics, and an intelligent diagnostic aid system based on a 1-D convolutional neural network (CNN) classifier. The fetal heart rate and a group of maternal clinical indicators, such as the uterine tonus activity, blood pressure, heart rate, temperature, and oxygen saturation are monitored. Multiple data sources generate a significant amount of data in different formats and rates. An emergency diagnostic subsystem is proposed based on a fog computing layer and the best accuracy was 92.59% for both maternal and fetal emergency. A smart health analytics system is proposed for multiple feature extraction and the calculation of linear and nonlinear measures. Finally, a classification technique is proposed as a prediction system for maternal, fetal, and simultaneous health status classification, considering six possible outputs. Different classifiers are evaluated and a proposed CNN presented the best results, with the F1-score ranging from 0.74 to 0.91. The results are validated based on the diagnosis provided by two specialists. The results show that the proposed system is a viable solution for maternal and fetal ambulatory monitoring based on IoT.

  • Monitoring signals such as fetal heart rate (FHR) are important indicators of fetal well-being. Computer-assisted analysis of FHR patterns has been successfully used as a decision support tool. However, the absence of a gold standard for the building blocks decision-making in the systems design process impairs the development of new solutions. Here we propose a prognostic model based on advanced signal processing techniques and machine learning algorithms for the fetal state assessment within a comprehensive evaluation process. Feature-engineering-based and time-series-based machine learning classifiers were modeled into three data segmentation schemas for CTU-UHB, HUFA, and DB-TRIUM datasets and the generalization performance was assessed by a two-way cross-dataset evaluation. It has been shown that the feature-based algorithms outperformed the time-series ones on data-limited scenarios. The Support Vector Machines (SVM) obtained the best results on the datasets individually: specificity (85.6% ) and sensitivity (67.5%). On the other hand, the most effective generalization results were achieved by the Multi-layer perceptron (MLP) with a specificity of 71.6% and sensitivity of 61.7%. The overall process provided a combination of techniques and methods that increased the final prognostic model performance, achieving relevant results and requiring a smaller amount of data when compared to the state-of-the-art fetal status assessment solutions.

  • Background and objective Intrauterine Growth Restriction (IUGR) is a condition in which a fetus does not grow to the expected weight during pregnancy. There are several well documented causes in the literature for this issue, such as maternal disorder, and genetic influences. Nevertheless, besides the risk during pregnancy and labour periods, in a long term perspective, the impact of IUGR condition during the child development is an area of research itself. The main objective of this work is to propose a machine learning solution to identify the most significant features of importance based on physiological, clinical or socioeconomic factors correlated with previous IUGR condition after 10 years of birth. Methods In this work, 41 IUGR (18 male) and 34 Non-IUGR (22 male) children were followed up 9 years after the birth, in average (9.1786 ± 0.6784 years old). A group of machine learning algorithms is proposed to classify children previously identified as born under IUGR condition based on 24-hours monitoring of ECG (Holter) and blood pressure (ABPM), and other clinical and socioeconomic attributes. In additional, an algorithm of relevance determination based on the classifier is also proposed, to determine the level of importance of the considered features. Results The proposed classification solution achieved accuracy up to 94.73%, and better performance than seven state-of-the-art machine learning algorithms. Also, relevant latent factors related to HRV and BP monitoring are proposed, such as: day-time heart rate (day-time HR), day-night systolic blood pressure (day-night SBP), 24-hour standard deviation (SD) of SBP, dropped, morning cortisol creatinine, 24-hour mean of SDs of all NN intervals for each 5 minutes segment (24-hour SDNNi), among others. Conclusion With outstanding accuracy of our proposed solutions, the classification system and the indication of relevant attributes may support medical teams on the clinical monitoring of IUGR children during their childhood development.

Last update from database: 6/9/23, 5:35 AM (UTC)