Your search

In authors or contributors
  • Government service mini-programs (GSMPs) in mobile payment have become integral to the eGovernment in China’s Greater Bay Area (GBA). The ubiquitous nature of WeChat and Alipay provides excellent flexibility for accessing public e-services. Yet, the determinants and mechanisms of adoption have not been identified. A convenience sample was collected from GBA core cities for statistical and SEM analysis. The findings suggest that service quality, trust in eGovernment, ubiquity, and social influence constitute the determinants. A structural model grounded on Self-Determination and Motivation theory is verified, where perceived value and intention contribute a high explanatory power. Benevolence, integrity, and competence are crucial indicators of trust, while social influence amplifies risk perception. Surprisingly, government support negatively moderates the impact of determinants on intention, indicating that over-intervention leads to inhibition. The mechanism illustrates the beneficial impact of GSMPs as the smart government channel and provides insights into addressing service homogeneity and policy applicability. Relevant theoretical and managerial implications are instructive to policymakers and practitioners of smart city innovation and in-depth integration in GBA.

  • There are many systematic reviews on predicting stock. However, each reveals a different portion of the hybrid AI analysis and stock prediction puzzle. The principal objective of this research was to systematically review the existing systematic reviews on Artificial Intelligence (AI) models applied to stock market prediction to provide valuable inputs for the development of strategies in stock market investments. Keywords that would fall under the broad headings of AI and stock prediction were looked up in Scopus and Web of Science databases. We screened 69 titles and read 43 systematic reviews, including more than 379 studies, before retaining 10 for the final dataset. This work revealed that support vector machines (SVM), long short-term memory (LSTM), and artificial neural networks (ANN) are the most popular AI methods for stock market prediction. In addition, the time series of historical closing stock prices are the most commonly used data source, and accuracy is the most employed performance metric of the predictive models. We also identified several research gaps and directions for future studies. Specifically, we indicate that future research could benefit from exploring different data sources and combinations, while we also suggest comparing different AI methods and techniques, as each may have specific advantages and applicable scenarios. Lastly, we recommend better evaluating different prediction indicators and standards to reflect prediction models’ actual value and impact.

  • This dissertation identifies factors driving consumer shopping behavior within the realm of live-streaming commerce, an area fast emerging in the e-commerce domain. Live-streaming shopping or commerce involves real-time interaction and entertainment with traditional online shopping, forming a unique endogenous environment where consumers can contact sellers or influencers directly. The study employed quantitative surveys that identified some of the main determining factors of consumer behavior within this context. The findings show that the significant factors in determining consumer behavior are trust and engagement, which are strongly influenced by the credibility and authenticity of the live streamer. Another significant finding is the role of social interaction and community building in providing consumers with a sense of belonging and validation, enhancing their confidence and purchase intention. Moreover, it highlights how marketing strategies of flash sales, limited-time offers, and partnerships with influencers make their way into the system to help invoke engagement and impulsive buying behavior among consumers. The implications of these findings extend to e-commerce platforms and marketers. Any improvements in features leading to trust, engagement, and interactivity within the community would drive higher customer satisfaction and sales. According to researchers, working partnerships with believable influencers and more extensive integrations of real-time marketing might further activate live-streaming commerce. This study thus fills a gap in the existing body of literature by detailing the drivers of consumer behavior toward live-stream commerce. It also identifies areas of future research on the current studies, including developing technologies and the cultural variances in the impact of live-stream commerce, including ethical considerations. These results are principle for guiding work on potential live-stream commerce in the digital age for anybody from workers to academicians

  • In the wave of digital transformation, Chinese banks have taken digital and scenario-based finance as primary strategic goals. The goal is to revolutionize the mobile banking experience and encourage frequent use of mobile banking services. However, assessing customer satisfaction with the various financial and contextual services mobile banking provides is crucial. The main objective of this study is to propose a model based on users' perception of financial usage in mobile banking scenarios and how the development of mobile banking finance and scenarios affects users' choice motivations. The study examined the interview records of 12 mobile banking users through qualitative in-depth interviews and utilized Nvivo qualitative analysis software to analyze the interview content. Through repeated thinking, sorting, and differentiating the data, nine core coding categories were formed. The coding was further refined and deepened to include Financial professionalism, Security, Marketing Stimulation, Innovative Products, Use Experience, Strong Relationship, Trust, Perceived usefulness, and Willingness to use. Based on these categories, a theoretical model of user willingness in the financial scenario of mobile banking has been proposed by referring to the optimized TAM model. The results may provide support to the banking industry in Macau in understanding customers' needs and fostering the positive development of mobile finance and the scene field in Macau

  • The potential of blockchain technology extends beyond cryptocurrencies and has the power to transform various sectors, including accounting and auditing. Its integration into auditing practices presents opportunities and challenges, and auditors must navigate new standards and engage with clients effectively. Blockchain technology provides tamper-proof record-keeping and fraud prevention, enhancing efficiency, transparency, and security in domains such as finance, insurance, healthcare, education, e-voting, and supply chain management. This paper conducts a bibliometric analysis of blockchain technology literature to gain insights into the current state and future directions of blockchain technology in auditing. The study identifies significant research themes and trends using keyword and citation analysis. The Vosviewer software was used to analyze the data and visualize the results. Findings reveal significant growth in blockchain research, particularly from 2021 onwards, with China emerging as a leading contributor, followed by the USA, India, and the UK. This study provides valuable insights into current trends, key contributors, and global patterns in blockchain technology research within auditing practices, and future research may explore thematic areas in greater depth.

  • With the rapid development of digital media, internet celebrity live streaming has become a key factor in influencing the consumer decision-making of adolescents, presenting unique regional characteristics in different socio-cultural and economic contexts. This study investigates the differences in consumption habits among adolescents in Macau and Mainland China and their impact on the innovation and reform of the commercial model of internet celebrity live streaming. The methodology employs a questionnaire survey and data analysis to systematically compare the consumption behavior of adolescents in Macao and mainland China, collecting live streaming consumption habits of adolescents in both regions. Statistical methods are used to compare and analyze the consumption patterns within the regions. The analysis indicates that influencers, as internet celebrities with a large number of fans on social media, have a significant impact on adolescents' consumption decisions through their recommendations and evaluations. Firstly, the convenience and diversity of e-commerce platforms provide adolescents with a wealth of consumption choices, such as characteristics and usage effects of products. Secondly, the recommendations and evaluations of influencers have become an important reference for adolescents' consumption. Results show that adolescents in Macau tend to seek entertainment and interaction in their consumption of internet celebrity live streaming, whereas those in Mainland China place greater emphasis on the practicality of the live streaming content and the cost-effectiveness of the products. Moreover, the study reveals the roles of socio-cultural and economic levels in the differences in consumption between the two regions. Based on these insights, it is recommended that live streaming platforms should advance the innovation and reform of their business models to cater to different market characteristics—such as optimizing content recommendation algorithms, enhancing interactive elements, and improving the integration of e-commerce features, thereby promoting business sustainability and economic benefits

  • Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This paper presents an empirical study that evaluates four existing deep learning models—VGG16, DenseNet, ResNet50, and GoogLeNet—utilizing the Facial Expression Recognition 2013 (FER2013) dataset. The dataset contains seven distinct emotional expressions: angry, disgust, fear, happy, neutral, sad, and surprise. Each model underwent rigorous assessment based on metrics including test accuracy, training duration, and weight file size to test their effectiveness in FER tasks. ResNet50 emerged as the top performer with a test accuracy of 69.46%, leveraging its residual learning architecture to effectively address challenges inherent in training deep neural networks. Conversely, GoogLeNet exhibited the lowest test accuracy among the models, suggesting potential architectural constraints in FER applications. VGG16, while competitive in accuracy, demonstrated lengthier training times and a larger weight file size (512MB), highlighting the inherent balance between model complexity and computational efficiency.

  • In the wave of digital transformation, Chinese banks have prioritized digital banking services as key strategic goals, aiming to revolutionize the mobile banking experience. This study aims to assess the factors influencing the willingness to use the various financial and contextual services offered through digital banking. Specifically, it is proposed a model based on users' perceptions of mobile banking scenarios and examines how the development of digital banking services influences users' willingness to use them. The study involved qualitative in-depth interviews with 12 mobile banking users, with the interview content analyzed using Nvivo qualitative analysis software. The data analysis identified 9 core coding categories: Financial Professionalism, Security, Marketing Stimulation, Innovative Products, Use Experience, Strong Relationship, Trust, Perceived Usefulness, and Willingness to Use. These categories were further refined to construct a theoretical model of user willingness in digital banking services, drawing from the optimized Technology Acceptance Model (TAM). The findings provide valuable insights for the banking industry in Macau, aiding in understanding customer needs and supporting the positive development of mobile finance and contextual digital banking services in the region.

  • Construction projects are complex endeavours, with potential obstacles that can cause delays which can have particularly profound implications potentially impacting on company's financial health, business continuity and reputation. It is becoming increasingly recognised that delays are context-specific and multifaceted, requiring more industry-oriented perceptions. This work proposes the exploratory use of Machine Learning based on Classification and Regression Trees (CART) Decision Trees (DT) to assess the predictive analysis of these approaches, considering surveys (primary data) collected from 100 specialists with different backgrounds and experiences in the construction industry. Survey responses are discussed, followed by the CART DTs, which are used as predictor for clarifying underneath relationship among different variables in a project environment. The major issue presented is related to Project Design, with "The firm is not allowed to apply for an extension of contract period", with two possible predictors, firstly, as the main factor it is found "Mistakes, inconsistencies, and ambiguities in specification and drawing", while other aspect highlights "Poor site supervision and management by the contractor". The results indicate that the correct use of Artificial Intelligence techniques with relevant data are potential tools to support the analysis of scenarios and avoidance of project delays in Project Management.

  • Artificial intelligence (AI) and deep learning (DL) are advancing in stock market prediction, attracting the attention of researchers in computer science and finance. This bibliometric review analyzes 525 articles published from 1991 to 2024 in Scopus-indexed journals, utilizing VOSviewer software to identify key research trends, influential contributors, and burgeoning themes. The bibliometric analysis encompasses a performance analysis of the most prominent scientific contributors and a network analysis of scientific mapping, which includes co-authorship, co-occurrence, citation, bibliographical coupling, and co-citation analyses enabled by the VOSviewer software. Among the 693 countries, significant hubs of knowledge production include China, the US, India, and the UK, highlighting the global relevance of the field. Various AI and DL technologies are increasingly employed in stock price predictions, with artificial neural networks (ANN) and other methods such as long short-term memory (LSTM), Random Forest, Sentiment Analysis, Support Vector Machine/Regression (SVM/SVR), among the 1399 keyword counts in publications. Influential studies such as LeBaron (1999) and Moghaddam (2016) have shaped foundational research in 8159 citations. This review offers original insights into the bibliometric landscape of AI and DL applications in finance by mapping global knowledge production and identifying critical AI methods advancing stock market prediction. It enables finance professionals to learn about technological developments and trends to enhance decision-making and gain market advantage.

  • The emergence of blockchain technology in 2008 marked a significant milestone in the evolution of digital currencies, paving the way for the emergence of cryptocurrencies such as Bitcoin. Since then, blockchain has undergone four generations of development, expanding its applications across various sectors. In particular, the integration of blockchain into accounting and auditing practices has garnered significant attention due to its potential to transform traditional methods. However, there's a lack of clear understanding of how blockchain impacts traditional auditing practices and finance recordkeeping and the implications for audit quality. Significant challenges and uncertainties hinder its widespread adoption, including technical hurdles, regulatory complexities, and practical barriers. This dissertation aims to determine the transformative impact of blockchain technology on auditing practices and finance recordkeeping. In order to fully understand the impact of blockchain on auditing practices and finance recordkeeping, the dissertation utilizes a mixed sequential research approach that is divided into three phases. The first approach involves gathering qualitative data through interviews with blockchain experts. The second approach involves collecting secondary qualitative data through a systematic literature review to determine the changes that blockchain has brought to traditional auditing practices and finance recordkeeping. This is followed by a bibliometric analysis to identify current trends in blockchain research related to auditing practices and finance recordkeeping. The third approach involves gathering data through an online-focused survey distributed to finance and other industry professionals to determine the challenges organizations face in implementing blockchain technology in auditing practices and finance recordkeeping. Additionally, in phase three, case studies will be conducted based on the survey responses to examine the hindrances and challenges faced by organizations in implementing blockchain and its impact on auditing practices in different regions and among different demographic groups. As the findings indicate, Integrating blockchain technology into accounting and auditing practices can bring about significant improvements in transparency, efficiency, and fraud prevention. However, there are several challenges that must be overcome for successful implementation, such as technical difficulties, regulatory uncertainties, and privacy concerns. To overcome these hurdles, it is necessary to establish clear regulatory frameworks and innovative solutions. Although smart contracts offer automation, they also pose security risks that need to be addressed. Despite these challenges, blockchain has the potential to revolutionize auditing by enabling real-time auditing and enhancing integrity verification. To ensure audit quality, auditors must adapt to new responsibilities and stay up-to-date with emerging trends. Collaboration among stakeholders and continuous education and training programs are key to driving the successful adoption of blockchain technology

  • As the world becomes more globalized, it is now more important than ever for brands and advertisers to find effective ways to engage with consumers of different cultural backgrounds. Developing marketing that targets people of different cultural backgrounds, or multicultural marketing, carries specific nuances and complexities that may make traditional methods fall short. With this being said, there is still a lack of studies that explore the correlation between consumer's cultural background and their overall brand perception. Neuromarketing has proven to be an effective tool to understanding consumer behavior, by utilizing neuroscience tools. To employ a more sophisticated and in-depth understanding of consumer perception, the current research study makes use of neuroscience tools and aims to study the influence of cultural background in brand perception, while in a controlled environment. Using physiological neuroscience tools, namely, facial expression analysis (FEA), electrodermal activity (EDA), and eye-tracking (ET), a total of thirty-eight individuals, with ages between 19 and 50 years old, from 12 different countries and regions, participated in this research study. Findings suggest that participants of different cultural backgrounds perceive multicultural commercials as more favorable than monocultural commercials. However, future research should be done with a larger sample size, as well as include a wider variety of commercials. Research would also benefit from adopting a statistical analysis to help determine the significance of the results obtained

  • <jats:p>Detecting emotions is a growing field aiming to comprehend and interpret human emotions from various data sources, including text, voice, and physiological signals. Electroencephalogram (EEG) is a unique and promising approach among these sources. EEG is a non-invasive monitoring technique that records the brain’s electrical activity through electrodes placed on the scalp’s surface. It is used in clinical and research contexts to explore how the human brain responds to emotions and cognitive stimuli. Recently, its use has gained interest in real-time emotion detection, offering a direct approach independent of facial expressions or voice. This is particularly useful in resource-limited scenarios, such as brain–computer interfaces supporting mental health. The objective of this work is to evaluate the classification of emotions (positive, negative, and neutral) in EEG signals using machine learning and deep learning, focusing on Graph Convolutional Neural Networks (GCNN), based on the analysis of critical attributes of the EEG signal (Differential Entropy (DE), Power Spectral Density (PSD), Differential Asymmetry (DASM), Rational Asymmetry (RASM), Asymmetry (ASM), Differential Causality (DCAU)). The electroencephalography dataset used in the research was the public SEED dataset (SJTU Emotion EEG Dataset), obtained through auditory and visual stimuli in segments from Chinese emotional movies. The experiment employed to evaluate the model results was “subject-dependent”. In this method, the Deep Neural Network (DNN) achieved an accuracy of 86.08%, surpassing SVM, albeit with significant processing time due to the optimization characteristics inherent to the algorithm. The GCNN algorithm achieved an average accuracy of 89.97% in the subject-dependent experiment. This work contributes to emotion detection in EEG, emphasizing the effectiveness of different models and underscoring the importance of selecting appropriate features and the ethical use of these technologies in practical applications. The GCNN emerges as the most promising methodology for future research.</jats:p>

  • <jats:title>Abstract</jats:title><jats:p>This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k‐Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1‐score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.</jats:p>

  • Since early times, the effects of a booming sector in other sectors of a small economy have been of interest to scholars. There is a general perception that the booming Gaming sector has contributed to the overall growth in Macau through the trickle-down effect, passing on the benefits of growth to other sectors. After the liberalization of the gaming industry in 2002, this booming sector experienced several years of exponential growth, becoming the driving industry for Macao’s economy. Several scholars and researchers have dedicated their studies to the effects of the casino gaming industry as a booming sector in such a small economy. However, there is a gap in what concerns measuring the influence of the Gaming sector as a driving industry for several other sectors or following industries of Macau’s economy. The purpose of this research study is to investigate in what measure the Gaming sector in Macao leveraged the other economic sectors and how related or correlated are the different industries of Macao’s Economy. A protocol-driven understanding of the state of the art on the interrelations between economic sectors and different techniques used to study those inter-relations was conducted through a systematic literature review. Given the limited available data on the Gross Value Added (GVA), or Gross Domestic Product (GDP) on the supply side, as a central measure of economic activity in the different sectors, several possible interpolation models using auxiliary high-frequency data (indicators) were compared, to achieve the optimal model for interpolation of each variable. Several forecasts for the future performance of Macau's four major economic sectors were presented based on different regression techniques. Autoregressive Integrated Moving Average (ARIMA) models were developed to assess the dependence of the future performance of a sector’s GVA on its past performance. Optimal Vector Autoregressive (VAR) models were created to identify the explanatory power of some sectors of Macau’s economy in others. Based on available auxiliary data in high-frequency (quarterly) it was possible to interpolate the quarterly GVA per economic sector, available only in low-frequency (annually), for the major sectors of Macao’s economy. Some sectors have a considerable explanatory power on the performance of other sectors, however, the proposed regression models did not identify a clear relation between the performance of the Gaming sector and the performance of other major sectors from Macao’s economy

  • <jats:p>Worldwide, cardiovascular diseases are some of the primary causes of death; yet the early detection and diagnosis of such diseases have the potential to save many lives. Technological means of detection are becoming increasingly essential and numerous techniques have been created for this purpose, such as forecasting. Of these techniques, the time series forecasting technique seeks to predict future events. The long-term time series forecasting of physiological data could assist medical professionals in predicting and treating patients based on very early diagnosis. This article presents a model that utilizes a deep learning technique to predict long-term ECG signals. The forecasting model can learn signals’ nonlinearity, nonstationarity, and complexity based on a long short-term memory architecture. However, this is not a trivial task as the correct forecasting of a signal that closely resembles the original complex signal’s structure and behavior while minimizing any differences in amplitude continues to pose challenges. To achieve this goal, we used a dataset available on the Physio net database, called MIT-BIH, with 48 ECG recordings of 30 min each. The developed model starts with pre-processing to reduce interference in the original signals, then applies a deep learning algorithm, based on a long short-term memory (LTSM) neural network with two hidden layers. Next, we applied the root mean square error (RMSE) and mean absolute error (MAE) metrics to evaluate the performance of the model and obtained an average RMSE of 0.0070±0.0028 and an average MAE of 0.0522±0.0098 across all simulations. The results indicate that the proposed LSTM model is a promising technique for ECG forecasting, considering the trends of the changes in the original data series, most notably in R-peak amplitude. Given the model’s accuracy and the features of the physiological signals, the system could be used to improve existing predictive healthcare systems for cardiovascular monitoring.</jats:p>

  • Consumer neuroscience analyzes individuals’ preferences through the assessment of physiological data monitoring, considering brain activity or other bioinformation to assess purchase decisions. Traditional marketing tactics include customer surveys, product evaluations, and comments. For product or brand marketing and mass production, it is important to understand consumer neurological responses when seeing an ad or testing a product. In this work, we use the bi-clustering method to reduce EEG noise and automatic machine learning to classify brain responses. We analyze a neuromarketing EEG dataset that contains EEG data from product evaluations from 25 participants, collected with a 14 channel Emotiv Epoch + device, while examining consumer items. Four components comprised the research methodology. Initially, the Welch Transform was used to filter the EEG raw data. Second, the best converted signal biclusterings are used to train different classification models. Each biclustering is evaluated with a separate classifier, considering F1-Score. After that, the H2O.ai AutoML library is used to select the optimal biclustering and models. Instead of traditional procedures, two thresholds are used. First-threshold values indicate customer satisfaction. Low values of the second threshold reflect consumer dissatisfaction. Values between the first and second criteria are classified as uncertain values. We outperform the state of the art with a 0.95 F1-Score value.

  • Introduction: SARS-CoV-2, a virus responsible for the emergence of the life-threatening disease known as COVID-19, exhibits a diverse range of clinical manifestations. The spectrum of symptoms varies widely, encompassing mild to severe presentations, while a considerable portion of the population remains asymptomatic. COVID-19, primarily a respiratory virus, has been linked to cardiovascular complications in some patients. Notably, cardiac issues can also arise after recovery, contributing to post-acute COVID-19 syndrome, a significant concern for patient health. The present study intends to evaluate the post-acute COVID-19 syndrome cardiovascular effect through ECG by comparing patients affected with cardiac diseases without COVID-19 diagnosis report (class 1) and patients with cardiac pathologies who present post-acute COVID-19 syndrome (class 2). Methods: From 2 body positions, a total of 10 non-linear features, extracted every 1 second under a multi-band analysis performed by Discrete Wavelet Transform (DWT), have been compressed by 6 statistical metrics to serve as inputs for an individual feature analysis by the means of Mann-Whitney U-test and XROC classification. Results and Discussion: 480 Mann-Whitney U-test statistical analyses and XROC discrimination approaches have been done. The percentage of statistical analysis with significant differences (p<0.05) was 30.42% (146 out of 480). The best overall results were obtained by approximating the feature Energy, with the data compressor Kurtosis in the body position Down. Those results were 83.33% of Accuracy, 83.33% of Sensitivity, 83.33% of Specificity and 87.50% of AUC. Conclusions: The results show that the applied methodology can be a way to show changes in cardiac behaviour provoked by post-acute COVID-19 syndrome.

  • This work provides a comprehensive systematic review of optimization techniques using artificial intelligence (AI) for energy storage systems within renewable energy setups. The primary goals are to evaluate the latest technologies employed in forecasting models for renewable energy generation, load forecasting, and energy storage systems, alongside their construction parameters and optimization methods. The review highlights the progress achieved, identifies current challenges, and explores future research directions. Despite the extensive application of machine learning (ML) and deep learning (DL) in renewable energy generation, consumption patterns, and storage optimization, few studies integrate these three aspects simultaneously, underscoring the significance of this work. The review encompasses studies from Web of Science, Scopus, and Science Direct up to December 2023, including works scheduled for publication in 2024. Each study related to renewable energy storage was individually analyzed to assess its objectives, methodology, and results. The findings reveal useful insights for developing AI models aimed at optimizing storage systems. However, critical areas need further exploration, such as real-time forecasting, long-term storage predictions, hybrid neural networks for demand-based generation forecasting, and the evaluation of various storage scales and battery technologies. The review also notes a significant gap in research on large-scale storage systems in Brazil and Latin America. In conclusion, the study emphasizes the need for continued research and the development of new algorithms to address existing limitations in the field.

Last update from database: 4/24/25, 3:01 AM (UTC)