Your search

Resource type

Results 3 resources

  • Convolutional neural network (CNN) model based on deep learning has excellent performance for target detection. However, the detection effect is poor when the object is circular or tubular because most of the existing object detection methods are based on the traditional rectangular box to detect and recognize objects. To solve the problem, we propose the circular representation structure and RepVGG module on the basis of CenterNet and expand the network prediction structure, thus proposing a high-precision and high-efficiency lightweight circular object detection method RebarDet. Specifically, circular tubular type objects will be optimized by replacing the traditional rectangular box with a circular box. Second, we improve the resolution of the network feature map and the upper limit of the number of objects detected in a single detect to achieve the expansion of the network prediction structure, optimized for the dense phenomenon that often occurs in circular tubular objects. Finally, the multibranch topology of RepVGG is introduced to sum the feature information extracted by different convolution modules, which improves the ability of the convolution module to extract information. We conducted extensive experiments on rebar datasets and used AB-Score as a new evaluation method to evaluate RebarDet. The experimental results show that RebarDet can achieve a detection accuracy of up to 0.8114 and a model inference speed of 6.9 fps while maintaining a moderate amount of parameters, which is superior to other mainstream object detection models and verifies the effectiveness of our proposed method. At the same time, RebarDet’s high precision detection of round tubular objects facilitates enterprise intelligent manufacturing processes.

  • Objective. As the preclinical stage of Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI) is characterized by hidden onset, which is difficult to detect early. Traditional neuropsychological scales are main tools used for assessing MCI. However, due to its strong subjectivity and the influence of many factors such as subjects’ educational background, language and hearing ability, and time cost, its accuracy as the standard of early screening is low. Therefore, the purpose of this paper is to propose a new key technology of fast digital early warning for MCI based on eye movement objective data analysis. Methodology. Firstly, four exploratory indexes (test durations, correlation degree, lengths of gaze trajectory, and drift rate) of MCI early warning are determined based on the relevant literature research and semistructured expert interview; secondly, the eye movement state is captured based on the eye tracker to realize the data extraction of four exploratory indexes. On this basis, the human-computer interactive 2.5-minute fast digital early warning paradigm for MCI is designed; thirdly, the rationality of the four early warning indexes proposed in this paper and their early warning effectiveness on MCI are verified. Results. Through the small sample test of human-computer interactive 2.5 fast digital early warning paradigm for MCI conducted by 32 elderly people aged 70–90 in a medical institution in Hangzhou, the two indexes of “correlation degree” and “drift rate” with statistical differences are selected. The experiment results show that AUC of this MCI early warning paradigm is 0.824. Conclusion. The key technology of human-computer interactive 2.5 fast digital early warning for MCI proposed in this paper overcomes the limitations of the existing MCI early warning tools, such as low objectification level, high dependence on professional doctors, long test time, requiring high educational level, and so on. The experiment results show that the early warning technology, as a new generation of objective and effective digital early warning tool, can realize 2.5-minute fast and high-precision preliminary screening and early warning for MCI in the elderly.

Last update from database: 5/3/24, 2:03 PM (UTC)