Your search

Resource type

Results 2 resources

  • The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC–MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10–4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.

  • Mangroves are a unique group of plants growing along tropical and sub-tropical coastlines, with the ability to remove several types of contaminants such as heavy metals and other persistent organic compounds in coastal waters. However, little attention has been given to the possible role of mangroves in the removal of organochlorinated pesticides (OCPs) from the environment. Used worldwide, these pesticides were banned in the late 80s, withal they can still be quantified in aquatic environments due to their high stability. Moreover, as persistent and lipophilic compounds, OCPs are known for their tendency to bioaccumulate and biomagnify through the food chain, affecting local ecosystems, and potentially human health. This work aimed to investigate the potential benefits of mangrove ecosystems as OCP phytoremediators. For this purpose, a total of seventy-three articles from non-mangrove and mangrove areas around the world were gathered, integrated and re-analysed as a whole. These data include information from four different matrices (water, sediment, benthic fauna and mangrove plants). A common trend of less pesticide contamination in mangrove areas was observed for all the selected matrices. As a complement, average concentrations were discussed considering International Directives, such as the European legislation 2013/39/EU for water policy and the Dutch List together with the International Sediment Quality Guideline, for sediments. Additionally, theoretical risk assessments were also included. Since information regarding OCPs in mangroves ecosystem is very scarce compared to non-mangrove areas, this review provides valuable insights regarding these environments, and the importance of preserving them as a relevant remediation unit.

Last update from database: 4/27/24, 1:27 AM (UTC)