Your search

Resource type

Results 49 resources

  • Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including investigations of developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post-fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition (PPI) paradigm at 5 dpf. Noise-exposed larvae showed a significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while the PPI revealed a hypersensitization effect and a similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure–function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.

  • Ligand peptides that have high affinity for ion channels are critical for regulating ion flux across the plasma membrane. These peptides are now being considered as potential drug candidates for many diseases, such as cardiovascular disease and cancers. In this work, we developed Multi-Branch-CNN, a CNN method with multiple input branches for identifying three types of ion channel peptide binders (sodium, potassium, and calcium) from intra- and inter-feature types. As for its real-world applications, prediction models that are able to recognize novel sequences having high or low similarities to training sequences are required. To this end, we tested our models on two test sets: a general test set including sequences spanning different similarity levels to those of the training set, and a novel-test set consisting of only sequences that bear little resemblance to sequences from the training set. Our experiments showed that the Multi-Branch-CNN method performs better than thirteen traditional ML algorithms (TML13), yielding an improvement in accuracy of 3.2%, 1.2%, and 2.3% on the test sets as well as 8.8%, 14.3%, and 14.6% on the novel-test sets for sodium, potassium, and calcium ion channels, respectively. We confirmed the effectiveness of Multi-Branch-CNN by comparing it to the standard CNN method with one input branch (Single-Branch-CNN) and an ensemble method (TML13-Stack). The data sets, script files to reproduce the experiments, and the final predictive models are freely available at https://github.com/jieluyan/Multi-Branch-CNN.

  • Employees work long hours in an environment where the ambient air quality is poor, directly affecting their work efficiency. The concentration of particulate matters (PM) produced by the interior renovation of shopping malls has not received particular attention in Macao. Therefore, this study will investigate the indoor air quality (IAQ), in particular of PM2.5, in large-scale shopping mall renovation projects. This study collected on-site PM data with low-cost portable monitoring equipment placed temporarily at specific locations to examine whether the current control measures are appropriate and propose some improvements. Prior to this study, there were no measures being implemented, and on-site monitoring to assess the levels of PM2.5 concentrations was non-existent. The results show the highest level of PM2.5 recorded in this study was 559.00 μg/m3. Moreover, this study may provide a reference for decision-makers, management, construction teams, design consultant teams, and renovation teams of large-scale projects. In addition, the monitoring of IAQ can ensure a comfortable environment for employees and customers. This study concluded that the levels of PM2.5 concentration have no correlation with the number of on-site workers, but rather were largely influenced by the processes being performed on-site.

  • The geochemistry and mineralogy of sediments provide relevant information for the understanding of the origin and metallogenic mechanism of ferromanganese nodules and crusts. At present, there are still few studies on the sediment origin of the Clarion–Clipperton Zone (CCZ) of the east Pacific, particularly on the systematic origin of sediments with a longer history/length. Here, bulk sediment geochemistry and clay mineral compositions were analyzed on a 5.7 m gravity core (GC04) obtained at the CCZ, an area rich in polymetallic nodules. The results indicate that the average total content of rare earth elements (REE), including yttrium (REY), in sediments is 454.7 ppm and the REEs distribution patterns normalized by the North American Shale Composite of samples are highly consistent, with all showing negative Ce anomalies and more obvious enrichment in heavy REE (HREE) than that of light REE (LREE). Montmorillonite/illite ratio, discriminant functions and smear slide identification indicate multiple origins for the material, and are strongly influenced by contributions from marine biomass, while terrestrial materials, seamount basalts and their alteration products and authigenic source also make certain contributions. The REY characteristics of the sediments in the study area are different from those of marginal oceanic and back-arc basins, and more similar to pelagic deep-sea sediments. Based on LREE/HREE-1/δCe and LREE/HREE-Y/Ho diagrams, we conclude that samples from the study area had pelagic sedimentary properties which suffered from a strong “seawater effect”.

  • Mangrove forests are one of the most ecologically valuable ecosystems in the world and provide a wide variety of ecosystem services to coastal communities, including cities. Macao, a highly urbanized coastal city located on the southern coast of China west of the Pearl River, is home to several species of mangroves with many associated flora and fauna. Mangrove forests in Macao are vulnerable to threats due to pressure from rapid and massive urban developments in the area, which led to mangrove loss in the past decades. To address this issue, the local authorities established special Ecological Zones for the management of the local mangroves. To reinforce local conservation efforts, educating the local population about the value of mangroves, especially school students, is of utmost importance. To evaluate the impact of environmental education activities on the environmental orientation, knowledge, and values of students toward mangrove conservation in Macao, a quasi-experimental study was undertaken. The effectiveness of a mangroves exhibition and field visit were evaluated using the New Environmental Paradigm (NEP) Scale—Macao version in a group of local school students who participated in the activities. Overall, the results provided consistently positive evaluations of the impact of the environmental education program. The strongest improvements were found in the students’ pro-environmental orientations, knowledge about mangroves, and value for environmental protection.

  • The widespread W-(Mo)-Sn-Nb-Ta polymetallic mineralization in Southeast (SE) China is genetically associated with Mesozoic highly fractionated granitic rocks. Such rocks have enigmatic mineralogical and geochemical features, making its petrogenesis an intensely debated topic. To better understand the underlying magma evolution processes, petrography, garnet chemistry and whole-rock major and trace element data are reported for Jurassic highly fractionated granitic rocks and associated microgranite and aplitepegmatite dikes from Macao and compared with coeval similar granitic rocks from nearby areas in SE China. Despite the fact that the most evolved rocks in Macao are garnet-bearing aplite-pegmatite dikes, the existence of coeval two-mica and garnet-bearing biotite and muscovite granites displaying more evolved compositions (e.g, lower Zr/Hf ratios) indicates that the differentiation sequence reached higher degrees of fractionation at a regional scale. Although crystal fractionation played an important role, late-stage fluid/melt interactions, involving F-rich fluids, imparted specific geochemical characteristics to Macao and SE China highly fractionated granitic rocks such as the non-CHARAC (CHArge-and-RAdius-Controlled) behavior of trace elements, leading, for example, to non-chondritic Zr/Hf ratios, Rare Earth Elements (REE) tetrad effects and Nb-Ta enrichment and fractionation. Such process contributed to the late-stage crystallization of accessory phases only found in these highly evolved facies. Among the latter, two populations of garnet were identified in MGI (Macao Group I) highly fractionated granitic rocks: small grossular-poor euhedral grains and large grossular-rich skeletal garnet grains with quartz inclusions. The first group was mainly formed through precipitation from highly evolved Mn-rich slightly peraluminous melts under low-pressure and relatively low temperature (∼700 °C) conditions. Assimilation of upper crust metasedimentary materials may have contributed as a source of Mn and Al to the formation of garnet. The second group has a metasomatic origin related to the interaction of magmatic fluids with previously crystallized mineral phases and, possibly, with assimilated metasedimentary enclaves or surrounding metasedimentary strata. The highly fractionated granitic rocks in Macao represent the first stage in the development of granite-related W-(Mo)-Sn-Nb-Ta mineralization associated with coeval more evolved lithotypes in SE China.

  • Stock movement prediction is one of the most challenging problems in time series analysis due to the stochastic nature of financial markets. In recent years, a plethora of statistical methods and machine learning algorithms were proposed for stock movement prediction. Specifically, deep learning models are increasingly applied for the prediction of stock movement. The success of deep learning models relies on the assumption that massive training data are available. However, this assumption is impractical for stock movement prediction. In stock markets, a large number of stocks do not have enough historical data, especially for the companies which underwent initial public offering in recent years. In these situations, the accuracy of deep learning models to predict the stock movement could be affected. To address this problem, in this paper, we propose novel instance-based deep transfer learning models with attention mechanism. In the experiments, we compare our proposed methods with state-of-the-art prediction models. Experimental results on three public datasets reveal that our proposed methods significantly improve the performance of deep learning models when limited training data are available.

  • Noise pollution is increasingly present in aquatic ecosystems, causing detrimental effects on growth, physiology and behaviour of organisms. However, limited information exists on how this stressor affects animals in early ontogeny, a critical period for development and establishment of phenotypic traits. We tested the effects of chronic noise exposure to increasing levels (130 and 150 dB re 1 μPa, continuous white noise) and different temporal regimes on larval zebrafish (Danio rerio), an important vertebrate model in ecotoxicology. The acoustic treatments did not affect general development or hatching but higher noise levels led to increased mortality. The cardiac rate, yolk sac consumption and cortisol levels increased significantly with increasing noise level at both 3 and 5 dpf (days post fertilization). Variation in noise temporal patterns (different random noise periods to simulate shipping activity) suggested that the time regime is more important than the total duration of noise exposure to down-regulate physiological stress. Moreover, 5 dpf larvae exposed to 150 dB continuous noise displayed increased dark avoidance in anxiety-related dark/light preference test and impaired spontaneous alternation behaviour. We provide first evidence of noise-induced physiological stress and behavioural disturbance in larval zebrafish, showing that both noise amplitude and timing negatively impact key developmental endpoints in early ontogeny.

  • Hydrothermal activity on mid-ocean ridges is an important mechanism for the delivery of Zn from the mantle to the surface environment. Zinc isotopic fractionation during hydrothermal activity is mainly controlled by the precipitation of Zn-bearing sulfide minerals, in which isotopically light Zn is preferentially retained in solid phases rather than in solution during mineral precipitation. Thus, seafloor hydrothermal activity is expected to supply isotopically heavy Zn to the ocean. Here, we studied sulfide-rich samples from the Duanqiao-1 hydrothermal field, located on the Southwest Indian Ridge. We report that, at the hand-specimen scale, late-stage conduit sulfide material has lower δ66Zn values (−0.05 ± 0.15 ‰; n = 19) than early-stage material (+0.13 ± 0.15 ‰; n = 10). These lower values correlate with enrichments in Pb, As, Cd, and Ag, and elevated δ34S values. We attribute the low δ66Zn values to the remobilization of earlier sub-seafloor Zn-rich mineralization. Based on endmember mass balance calculations, and an assumption of a fractionation factor (αZnS-Sol.) of about 0.9997 between sphalerite and its parent solution, the remobilized Zn was found consist of about 1/3 to 2/3 of the total Zn in the fluid that formed the conduit samples. Our study suggests that late-stage subsurface hydrothermal remobilization may release isotopically-light Zn to the ocean, and that this process may be common along mid-ocean ridges, thus increasing the size of the previously identified isotopically light Zn sink in the ocean.

  • Genotoxic effects of dicofol on the edible clam Meretrix meretrix were investigated through a mesocosm experiment. Individuals of M. meretrix, were exposed to environmental concentration (D1 = 50 ng/L) and supra-environmental concentration (D2 = 500 ng/L) of dicofol for 15 days, followed by the same depuration period. DNA damage (i.e., strand breaks and alkali-labile sites) was evaluated at day 1, 7 and 15, during uptake and depuration, using Comet assay (alkaline version) and nuclear abnormalities (NAs) as genotoxicity biomarkers. The protective effects of dicofol against DNA damage induced by ex vivo hydrogen peroxide (H2O2) exposure were also assessed. Comet assay results revealed no significant DNA damages under dicofol exposure, indicating 1) apparent lack of genotoxicity of dicofol to the tested conditions and/or 2) resistance of the animals due to optimal adaptation to stress conditions. Moreover, ex vivo H2O2 exposure showed an increase in the DNA damage in all the treatments without significant differences between them. However, considering only the DNA damage induced by H2O2 during uptake phase, D1 animals had significantly lower DNA damage than those from other treatments, revealing higher protection against a second stressor. NAs data showed a decrease in the % of cells with polymorphic, kidney shape, notched or lobbed nucleus, along the experiment. The combination of these results supports the idea that the clams used in the experiment were probably collected from a stressful environment (in this case Pearl River Delta region) which could have triggered some degree of adaptation to those environmental conditions, explaining the lack of DNA damages and highlighting the importance of organisms’ origin and the conditions that they were exposed during their lives.

  • A 1:12,000 geological map of the Macao Special Administrative Region has been produced through detailed field work supported by petrographic, mineralogical, geochronological and geochemical data obtained in previous studies. This map aims to represent a reliable tool to understand the geological evolution of the region and for management of the territory. The geology of Macao is dominated by two groups of Jurassic granitic rocks belonging to an intrusive suite located along the coast of Southeast China: Macao Group I (MGI: 164.5 ± 0.6 to 162.9 ± 0.7 Ma) and Macao Group II (MGII: 156.6 ± 0.2 to 155.5 ± 0.8 Ma), including the associated microgranite, aplite and pegmatite dikes and quartz veins. Remnants of the metasedimentary wall-rock are present as Devonian xenoliths enclosed within the granites. Younger Jurassic to Cretaceous andesite to dacite dikes (150.6 ± 0.6 to <120 Ma) intrude the granitic rocks. Additionally, Quaternary sedimentary deposits cover the older lithologies.

  • Hydrothermal activities on ultraslow-spreading ridges exhibit diverse characteristics, long histories with multiple participants, and might form large-scale, high-grade sulfide deposits. The Duanqiao hydrothermal field (DHF) is located at the segment with the thickest oceanic crust and a large axial magma chamber on the Southwest Indian Ridge, providing unique perspective of sulfide metallogenesis on ultraslow-spreading ridges. Previous studies revealed that DHF sulfide exhibits distinct features of enrichment of ore-forming elements in comparison with those of hydrothermal fields on sediment-starved mid-ocean ridges. However, the genesis and processes responsible for such differences remain poorly constrained. In this study, mineralogical, geochemical and S and Pb isotopic analyses were performed on relict sulfide mound samples to characterize DHF formation. The samples show clear concentric mineral zonation from the interior to the exterior wall. Assemblages of chalcopyrite, sphalerite, and pyrite are distributed mainly in the interior wall, whereas pyrite and marcasite are distributed mainly in the exterior wall. The low Cu content and Pb isotopic composition of the sulfide indicate that the metals are derived mainly from basement basalts. The δ34S values exhibit positive values distributed over a reasonably narrow range (2.42‰–7.97‰), which suggests approximately 62.1%–88.5% of S with basaltic origin. Compared with most hydrothermal fields along the sediment starved mid-ocean ridges, the DHF sulfide shows particularly high contents of Pb (263–2630 ppm), As (234–726 ppm), Sb (7.32–44.3 ppm), and Ag (35.2 to >100 ppm). The δ34S values exhibit an increasing tendency from the sample exterior to the interior. We propose that these features probably reflect the existence of a subsurface zone refining process. Our results provide new insight into the sulfide formation process and contribute to understanding the metallogenic mechanism of hydrothermal sulfides on ultraslow-spreading ridges.

  • Reproduction of the sea cucumber Apostichopus japonicus is critical for aquaculture production. Gonadal development is the basis of reproduction, and lipids, which are among the main nutrients required for gonadal development, directly affect reproduction. We investigated whether gonadal and intestinal lipid metabolism differed between male and female A. japonicus. Transcriptome analysis of the intestines of sexually mature male and female wild-caught individuals revealed differences in gene expression, with 27 and 39 genes being up-regulated in females and males, respectively. In particular, the expression of the fatty acid synthase gene was higher in males than in females. Metabolome analysis of the gonads identified 141 metabolites that were up-regulated and 175 metabolites that were down-regulated in the testes compared with the ovaries in the positive/negative mode of an LC-MS/MS analysis. A variety of polyunsaturated fatty acids were found at higher concentrations in the testes than in the ovaries. 16 s rDNA sequencing analysis showed that the composition and structure of the intestinal microbiota were similar between males and females. These results suggest that sex differences in intestinal metabolism of A. japonicus are not due to differences in the microbiota, and we speculate that gonadal metabolism may be related to intestinal morphology. This information might be useful in improving the reproductive efficiency of sea cucumbers in captivity.

  • Abstract Much controversy has occurred in the past few decades regarding the nature of the sources, the petrogenetic processes, and the tectonic regime(s) of the Jurassic magmatism within the Southeast China magmatic belt. This study aims to contribute to the discussion with mineral chemistry, and whole-rock element and Sr-Nd-Hf-Pb isotopic geochemical data from granitic rocks and microgranular mafic enclaves from Macao, where two discrete groups of I-type biotite granites have been identified (referred to as Macao Group I [MGI] and Macao Group II [MGII]). It is proposed that the granitic magmas were generated by partial melting of infracrustal medium- to high-K, basaltic Paleoproterozoic to Mesoproterozoic protoliths (Nd depleted mantle model age [TDM2] = 1.7–1.6 Ga and Hf TDM2 = 1.8–1.6 Ga), triggered by underplating of hot mantle-derived magmas in an extensional setting related to the foundering of a previously flat slab (paleo–Pacific plate) beneath the SE China continent. The main differences between the two groups of Macao granites are attributed to assimilation and fractional crystallization processes, during which upper-crustal Paleozoic metasediments were variably assimilated by MGI magmas. This is evidenced by an increase in initial 87Sr/86Sr ratios with degree of evolution, presence of metasedimentary enclaves, and high percentage of zircon xenocrysts with Paleozoic ages. In addition, other processes like late-stage fluid/melt interaction and magma mixing also left some imprints on granite compositions (rare earth element tetrad effect plus non–charge-and-radius-controlled behavior of trace elements and decoupling between different isotope systems, respectively). The distribution of isotopically distinct granites in SE China reflects the nature of the two Cathaysia crustal blocks juxtaposed along the Zhenghe-Dapu fault.

  • Parental nutrient reserves are directly related to reproductive performance in sea cucumbers. This study focused on the lipid requirements of male and female sea cucumbers Apostichopus japonicus during the reproductive stage and analyzed their physiological responses to a high-fat diet (HFD). The intestinal lipid metabolites and microbiome profile changed significantly in animals fed with the HFD, as given by an upregulation of metabolites related to lipid metabolism and an increase in the predominance of Proteobacteria in the microbiome, respectively. The metabolic responses of male and female sea cucumbers to the HFD differed, which in turn could have triggered sex-related differences in the intestinal microbiome. These results suggest that the lipid content in diets can be differentially adjusted for male and female sea cucumbers to improve nutrition and promote reproduction. This data contributes to a better understanding of the reproductive biology and sex differences of sea cucumbers.

  • Microbial and hydrothermal venting activities on the seafloor are important for the formation of sediment-hosted stratiform sulfide (SHSS) deposits. Fe isotopic compositions are sensitive to both microbial and hydrothermal activities and may be used to investigate the formation of these deposits. However, to the best of our knowledge, no Fe isotopic studies have been conducted on SHSS deposits. In the Devonian Dajiangping SHSS-type pyrite deposit (389 Ma), South China, laminated pyrite ores were precipitated from exhalative hydrothermal fluids, whereas black shales were deposited during intervals with no exhalation. Pyrite grains from black shales mostly display positive δ56Fe-py (0.01–0.73‰), higher than marine sediments (ca. 0‰), due to pyrite deriving Fe from basinal shuttled Fe(III) (hydr-)oxides and slowly crystallizing in pores of sediments with equilibrium fractionation, except for negative δ56Fe-py (−0.17‰ to −0.24‰) of two samples caused by mixing of Fe from underlain laminated ores. The positive δ34S-py (3.50–24.5‰) of black shales reflect that sulfur of pyrite originated from quantitative reduction of sulfate in closed pores of sediments. In contrast, pyrite grains of laminated ores have negative δ56Fe-py (−0.60‰ to −0.21‰), which were not only inherited from the negative δ56Fe of hydrothermal fluids but also caused by kinetic fractionation during rapid precipitation of a pyrite precursor (FeS) in hydrothermal plumes. These ores have negative δ34S-py (−28.7‰ to −1.82‰), because H2S for pyrite mineralization was produced by bacterial sulfate reduction (BSR) in a sulfate-rich seawater column or shallow sediments. The δ56Fe-py values of laminated ores co-vary positively with δ34S-py and δ13C-carbonate along the ore stratigraphy, with δ13C-carbonate values ranging from −12.0‰ to −2.50‰. However, they correlate negatively with aluminum-normalized total organic carbon (TOC/Al2O3). Organic carbon is thus considered to enhance the production of H2S by BSR activities, increase pyrite precipitation rates and promote the expression of kinetic fractionation of Fe isotopes. Intriguingly, in the ore units with vigorous hydrothermal venting activities, δ56Fe-py, δ34S-py and δ13C-carbonate values display a consistently increasing trend. Such results suggest that venting hydrothermal fluids significantly inhibited the H2S production of BSR, which then reduced the pyrite crystallization rate and decreased the kinetic fractionation of Fe isotopes. Our study reveals that the formation of SHSS deposits relies on H2S from microbial activities and metals from hydrothermal exhalation on the seafloor, but that vigorous exhalation can inhibit microbial activities and thus sulfide precipitation rates. The integrated use of Fe, S, and C isotopes can effectively elucidate these dynamic interactions between hydrothermal venting and microbial activities during the formation of SHSS deposits.

  • As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the toxicity of chemical compounds. However, not only are these experiments time consuming and costly, but experiments that involve animal testing are increasingly subject to ethical concerns. While traditional machine learning (ML) methods have been used in the field with some success, the limited availability of annotated toxicity data is the major hurdle for further improving model performance. Inspired by the success of semi-supervised learning (SSL) algorithms, we propose a Graph Convolution Neural Network (GCN) to predict chemical toxicity and trained the network by the Mean Teacher (MT) SSL algorithm. Using the Tox21 data, our optimal SSL-GCN models for predicting the twelve toxicological endpoints achieve an average ROC-AUC score of 0.757 in the test set, which is a 6% improvement over GCN models trained by supervised learning and conventional ML methods. Our SSL-GCN models also exhibit superior performance when compared to models constructed using the built-in DeepChem ML methods. This study demonstrates that SSL can increase the prediction power of models by learning from unannotated data. The optimal unannotated to annotated data ratio ranges between 1:1 and 4:1. This study demonstrates the success of SSL in chemical toxicity prediction; the same technique is expected to be beneficial to other chemical property prediction tasks by utilizing existing large chemical databases. Our optimal model SSL-GCN is hosted on an online server accessible through: https://app.cbbio.online/ssl-gcn/home.

Last update from database: 5/2/24, 3:19 PM (UTC)