Your search

Resource type

Results 49 resources

  • The on-board identification of ore minerals during a cruise is often postponed until long after the cruise is over. During the M127 cruise, 21 cores with deep-seafloor sediments were recovered in the Trans-Atlantic Geotraverse (TAG) field along the Mid Atlantic Ridge (MAR). Sediments were analyzed on-board for physicochemical properties such as lightness (L*), pH and Eh. Selected samples were studied for mineral composition by X-ray powder diffraction (XRD). Based on XRD data, sediment samples were separated into high-, low- and non-carbonated. Removal of carbonates is a common technique in mineralogical studies in which HCl is used as the extraction agent. In the present study, sequential extraction was performed with sodium acetate buffer (pH 5.0) to remove carbonates. The ratio between the highest calcite XRD reflection in the original samples (Iorig) vs its XRD-reflection in samples after their treatment with the buffer (Itreat) was used as a quantitative parameter of calcite removal, as well as to identify minor minerals in carbonated samples (when Iorig/Itreat > 24). It was found that the lightness parameter (L*) showed a positive correlation with calcite XRD reflection in selected TAG samples, and this could be applied to the preliminary on-board determination of extraction steps with acetate buffer (pH 5.0) in carbonated sediment samples. The most abundant minerals detected in carbonated samples were quartz and Al- and Fe-rich clays. Other silicates were also detected (e.g., calcic plagioclase, montmorillonite, nontronite). In non-carbonated samples, Fe oxides and hydroxides (goethite and hematite, respectively) were detected. Pyrite was the dominant hydrothermal mineral and Cu sulfides (chalcopyrite, covellite) and hydrothermal Mn oxides (birnessite and todorokite) were mineral phases identified in few samples, whereas paratacamite was detected in the top 20 cm of the core. The present study demonstrates that portable XRD analysis makes it possible to characterize mineralogy at cored sites, in particular in both low- and high-carbonated samples, before the end of most cruises, thus enabling the quick modification of exploration strategies in light of new information as it becomes available in near-real time.

  • Despite the levels of air pollution in Macao continuing to improve over recent years, there are still days with high-pollution episodes that cause great health concerns to the local community. Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5) concentrations in Macao. The forecast models were built and trained using the meteorological and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for validation. Our results show that there is no significant difference between the performance of the four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021 (the new normal period). However, RF performed significantly better than the other methods for 2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE, and BIAS. The reduced performance of the statistical MLR and other ML models was presumably due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by a widespread infectious disease.

  • Limited special education and related services are available for children with autism spectrum disorder (ASD) in Macau, especially those who are educated in general education classrooms. No intervention study has been conducted on these children. This study was conducted to explore the relationship between a board game play intervention and board game play behaviors and social communication of children with ASD educated in general education classrooms in Macau. A repeated measures design was used and the results of this study showed the mean occurrence of unprompted board game play behaviors per session during intervention was not significantly different from that during pre- or post-intervention. The mean occurrence of social communication per session during intervention was significantly higher than that during pre- and post-intervention. These findings suggest a positive relationship existed between the board game intervention used in this study and social communication of children with ASD.

  • The recently explored inactive Tianzuo hydrothermal field, in the amagmatic segment of the ultraslow-spreading Southwest Indian Ridge (SWIR), is closely associated with detachment faults. In this site, sulfide minerals are hosted by serpentine-bearing ultramafic rocks and include high-temperature (isocubanite, sphalerite, and minor pyrrhotite) and low-temperature (pyrite I, marcasite, pyrite II, and covellite) phases. In this study, trace-element concentrations of isocubanite and pyrite II were used to elucidate mineralization processes in ultramafic rocks hosting sulfides. Results show that isocubanite is enriched in metals such as Cu, Co, Sn, Te, Zn, Se, Pb, Bi, Cd, Ag, In, and Mn, and pyrite II is enriched in Mo and Tl. The marked enrichment in Te, Cu, Co, and In in isocubanite (compared with Se, Zn, Ni, and Sn, respectively) is most likely due to the contribution of magmatic fluids from gabbroic intrusions beneath the hydrothermal field. The intrusion of gabbroic magmas would have enhanced serpentinization reactions and provided a relatively oxidizing environment through the dissolution of anhydrite precipitated previously in the reaction zone, within high temperature and low pH conditions. This might have facilitated the extraction of metals by initial hydrothermal fluids, leading to the general enrichment of most metals in isocubanite. Metals in pyrite II have compositions similar to those of isocubanite, except for strong depletion in magmatically derived Te, Cu, Co, and In. This means that serpentinization processes had a dominating role in pyrite II precipitation as well. The enrichment of pyrite II in Mo and Tl is also indicative of seawater contribution in its composition. The study concludes that serpentinization reactions contribute effectively both to high- and low-temperature sulfide mineralization at Tianzuo hydrothermal field, with gabbroic intrusions further promoting high-temperature sulfide mineralization, providing additional metals, fluids and heat. In contrast, low-temperature sulfide mineralization occurred during the cooling of gabbroic intrusions, with decreasing rates of serpentinization reactions and a significant influence of seawater.

  • Anthropogenic noise of variable temporal patterns is increasing in aquatic environments, causing physiological stress and sensory impairment. However, scarce information exists on exposure effects to continuous versus intermittent disturbances, which is critical for noise sustainable management. We tested the effects of different noise regimes on the auditory system and behaviour in the zebrafish (Danio rerio). Adult zebrafish were exposed for 24 h to either white noise (150 ± 10 dB re 1 μPa) or silent control. Acoustic playbacks varied in temporal patterns—continuous, fast and slow regular intermittent, and irregular intermittent. Auditory sensitivity was assessed with Auditory Evoked Potential recordings, revealing hearing loss and increased response latency in all noise-treated groups. The highest mean threshold shifts (c. 13 dB) were registered in continuous and fast intermittent treatments, and no differences were found between regular and irregular regimes. Inner ear saccule did not reveal significant hair cell loss but showed a decrease in presynaptic Ribeye b protein especially after continuous exposure. Behavioural assessment using the standardized Novel Tank Diving assay showed that all noise-treated fish spent > 98% time in the bottom within the first minute compared to 82% in control, indicating noise-induced anxiety/stress. We provide first data on how different noise time regimes impact a reference fish model, suggesting that overall acoustic energy is more important than regularity when predicting noise effects.

  • Statistical methods such as multiple linear regression (MLR) and classification and regression tree (CART) analysis were used to build prediction models for the levels of pollutant concentrations in Macao using meteorological and air quality historical data to three periods: (i) from 2013 to 2016, (ii) from 2015 to 2018, and (iii) from 2013 to 2018. The variables retained by the models were identical for nitrogen dioxide (NO2), particulate matter (PM10), PM2.5, but not for ozone (O3) Air pollution data from 2019 was used for validation purposes. The model for the 2013 to 2018 period was the one that performed best in prediction of the next-day concentrations levels in 2019, with high coefficient of determination (R2), between predicted and observed daily average concentrations (between 0.78 and 0.89 for all pollutants), and low root mean square error (RMSE), mean absolute error (MAE), and biases (BIAS). To understand if the prediction model was robust to extreme variations in pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and the low pollution episode during the period of implementation of the preventive measures for COVID-19 pandemic. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration exceeding 55 μg/m3 and 400 μg/m3, respectively. The 2013 to 2018 model successfully predicted this high pollution episode with high coefficients of determination (of 0.92 for PM2.5 and 0.82 for O3). The low pollution episode for PM2.5 and O3 was identified during the 2020 COVID-19 pandemic period, with a low record of daily concentration for PM2.5 levels at 2 μg/m3 and O3 levels at 50 μg/m3, respectively. The 2013 to 2018 model successfully predicted the low pollution episode for PM2.5 and O3 with a high coefficient of determination (0.86 and 0.84, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels.

  • The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on multiple regression (MR) analysis were developed successfully for Macao to predict the next day concentrations of PM10, PM2.5, and NO2. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.89 to 0.92) for all pollutants. The models utilized meteorological and air quality variables based on five years of historical data, from 2013 to 2017. The data from 2013 to 2016 were used to develop the statistical models and data from 2017 were used for validation purposes. A wide range of meteorological and air quality variables were identified, and only some were selected as significant dependent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-hour levels. The models were applied in forecasting the next day average daily concentrations for PM10, PM2.5, and NO2 for the air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.

  • Reaction of ultramafic rocks with seawater and subsequent serpentinization has been considered one of the most important factors controlling the formation of ultramafic-hosted seafloor massive sulfide (UM-SMS) deposits. However, the mineralization processes responsible for these deposits remain poorly understood, in particular because they are less abundant as compared with their basaltic counterparts. In this work, serpentinites with different alteration grades collected at the Tianzuo hydrothermal field (THF), Southwest Indian Ridge, were studied. Mineralogical and chemical analyses were performed in the secondary opaque minerals resulting from serpentinization to understand the role of this process during the formation of UM-SMS deposits. Our results show that these opaque minerals mainly consist of magnetite, hematite, pentlandite, and minor pyrite, suggestive of high but varying oxygen and sulfur fugacities. The hematite is characterized by an enrichment in Mg, Si, Ni, and Co as compared with magnetite. Pentlandite associated with hematite has elevated and consistent Ni contents as compared with that associated with magnetite. These results indicate that breakdown and decomposition of primary silicate and sulfide minerals during serpentinization has controlled the sources of ore-forming materials. Concentrations of Te are variable and show a positive correlation with Ni in pentlandite associated with magnetite or hematite, suggesting that gabbroic intrusions provided additional material to the hydrothermal system. Oxidation and sulfidation conditions are ideal for the formation of trisulfur ion S3− in THF, which can significantly improve the capability of hydrothermal fluids for leaching ore-forming metals from the wall rocks, promoting the formation of THF. In addition of reduced systems, hydrothermal fluids with high oxygen and sulfur fugacities triggered by extensive seawater infiltration can most likely also develop in ultramafic-hosted systems. These results suggest that the areas with well-developed fractures are promising candidates for further exploration of UM-SMS deposits along mid-oceanic ridges.

  • In southeast Asia, males of the Siamese fighting fish, Betta splendens, have been selected across centuries for winning paired staged fights and previous work has shown that males from fighter strains are more aggressive than wild-types. This strong directional selection for winners is likely to have targeted aggression-related endocrine systems, and a comparison between fighter and wild-type strains can bring into evidence the key hormones implicated in aggression. Here, we compared the plasma levels of the androgen 11-ketotestosterone (KT) and of the corticosteroid cortisol (F) in F2 males of a fighter and a wild-type strain raised under similar laboratory conditions. We show that F was generally lower in fighter as compared with wild-type males, while no overall differences in KT levels were detected between strains. When presented with a mirror-induced aggressive challenge, post-fight levels of F increased but more significantly so in wild-type males, while KT increased in males of both strains. After the challenge, fighter males had higher levels of KT as compared with wild-type males, while the pattern for F was opposite. As compared with animals in social groups, wild-type males placed under social isolation had lower F levels, while KT decreased for fighters. Taken together, this data suggests that while wild-type males responded to aggression with an increase in circulating levels of both androgens and corticosteroids, males selected for winning fights maintained a blunt F response, increasing only KT levels. These data agree with the hypothesis that a combination of high levels of androgens and low levels of corticosteroids is associated with high aggression. Overall, these results seem to indicate that selection for winning had a stronger impact in the hypothalamus-pituitary-interrenal axis than in the hypothalamus-pituitary–gonadal axis in B. splendens.

  • The occurrence of endocrine disrupting chemicals (EDCs) is a major issue for marine and coastal environments in the proximity of urban areas. The occurrence of EDCs in the Pearl River Delta region is well documented but specific data related to Macao is unavailable. The levels of bisphenol-A (BPA), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) were measured in sediment samples collected along the coastline of Macao. BPA was found in all 45 collected samples with lower BPA concentrations associated to the presence of mangrove trees. Biodegradation assays were performed to evaluate the capacity of the microbial communities of the surveyed ecosystems to degrade BPA and its analogue BPS. Using sediments collected at a WWTP discharge point as inoculum, at a concentration of 2 mg l−1 complete removal of BPA was observed within 6 days, whereas for the same concentration BPS removal was of 95% after 10 days, which is particularly interesting since this compound is considered recalcitrant to biodegradation and likely to accumulate in the environment. Supplementation with BPA improved the degradation of bisphenol-S (BPS). Aiming at the isolation of EDCs-degrading bacteria, enrichments were established with sediments supplied with BPA, BPS, E2 and EE2, which led to the isolation of a bacterial strain, identified as Rhodoccoccus sp. ED55, able to degrade the four compounds at different extents. The isolated strain represents a valuable candidate for bioremediation of contaminated soils and waters.

  • Seafloor massive sulfide (SMS) deposits are important deep-sea mineral resources expected to occur predominantly on slow- and ultraslow-spreading mid-ocean ridges. Resource estimates are already available for some of the largest SMS deposits on slow-spreading ridges but not on ultraslow-spreading ridges. Based on geological mapping and sampling, this study investigates the distribution and content of sulfide-rich deposits in the Yuhuang-1 hydrothermal field (YHF), located on the ultraslow-spreading Southwest Indian Ridge. The sulfide-rich deposits in the YHF are composed of two areas ∼500 m apart: the southwest sulfide area (SWS) and the northeast sulfide area (NES). We calculated the volume of sulfide-rich mounds in the YHF and arrived at a total accumulation of ∼10.6 × 106 tons, including at least ∼7.5 × 105 tons of copper and zinc and ∼18 tons of gold. Furthermore, considering the coverage of layered hydrothermal sediment mixed with sulfide-rich breccias, which may have underlying massive sulfide deposits, the maximum total mass was estimated at ∼45.1 × 106 tons. This suggests that the YHF is one of the largest SMS deposits worldwide and confirm that ultraslow-spreading ridges have the greatest potential to form large-scale SMS deposits.

  • Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.

  • The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC–MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10–4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.

  • Fishes show remarkably diverse aggressive behaviour. Aggression is expressed to secure resources; adjusting aggression levels according to context is key to avoid negative consequences for fitness and survival. Nonetheless, despite its importance, the physiological basis of aggression in fishes is still poorly understood. Several reports suggest hormonal modulation of aggression, particularly by androgens, but contradictory studies have been published. Studies exploring the role of chemical communication in aggressive behaviour are also scant, and the pheromones involved remain to be unequivocally characterized. This is surprising as chemical communication is the most ancient form of information exchange and plays a variety of other roles in fishes. Furthermore, the study of chemical communication and aggression is relevant at the evolutionary, ecological and economic levels. A few pioneering studies support the hypothesis that aggressive behaviour, at least in some teleosts, is modulated by “dominance pheromones” that reflect the social status of the sender, but there is little information on the identity of the compounds involved. This review aims to provide a global view of aggressive behaviour in fishes and its underlying physiological mechanisms including the involvement of chemical communication, and discusses the potential use of dominance pheromones to improve fish welfare. Methodological considerations and future research directions are also outlined.

  • The prevalence of microplastics in the environment has become a major global conservation issue. One primary source of environmental microplastics is personal care and cosmetic products (PCCPs) containing microbeads. The market availability of PCCPs containing microbeads and the level of contamination of coastal sediments by microplastics was studied in one of the most densely populated cities in the world, Macao in China. We found that PCCPs containing microbeads are still widely available for sale in the region, with over 70% of surveyed PCCPs containing at least one type of microbeads as an ingredient, with polyethylene (PE) being the most common one. In an estimate, the use of PCCPs in the territory may release over 37 billion microbeads per year into the environment via wastewater treatment plants. The density of microplastics in coastal sediments varied between 259 and 1,743 items/L of sediment, amongst the highest reported in the world. The fraction of < 1 mm was the most abundant, representing an average of 98.6% of the total, and correlated positively with the abundance of larger sized fragments. The results show that although environmental pollution with microplastics released from PCCPs usage is significant, other sources, namely fragmentation of larger plastic debris, likely contribute more to the issue. The study highlights the magnitude of the problem at a local level and suggests possible mitigating strategies.

  • The Qiyugou gold deposit, located in the Xiong’ ershan area of the North China Craton, contains abundant bismuth-sulfosalts that are closely associated with gold mineralization. Pyrite is the dominant Au-hosted mineral, and has been formed in three generations (Py1, Py2, and Py3). Py1 grains, generally intergrown with milky quartz, are coarse (>1 mm), euhedral in shape, and Au-depleted in composition. In contrast, subhedral Py2 grains, associated with light gray quartz, are medium to coarse (0.2–3 mm) and are enriched in gold that is both invisible and visible. Py3 grains (0.1–0.5 mm), intergrown with abundant sulfide minerals, are relatively fine and Au-depleted. The time-resolved LA-ICP-MS depth profiles of the Py2 grains indicate that invisible gold occurs as either solid solution or nano-particles of native gold and electrum. Visible gold occurs as small blebs in the Py2 grains where inclusions of native bismuth, galenobismutite, lillianite homologs, tetradymite, and galena are also present. In addition, it is common that electrum in microfracture infillings or along grain boundaries of the Py1 and Py2, are intergrown with bismuthinite derivatives, Bi-Cu sulfosalts, emplectite, tetradymite, chalcopyrite, galena, and Py3. Based on textural relationships and mineral assemblages, calculation of physicochemical conditions show that gold was formed in conditions of fTe2 = ~10−11 and fS2 = ~10−11 to 10−12 for Py2, and fTe2 = ~10−9 to 10-11and fS2 = ~10−10 to 10−11 for Py3. We thus proposed that such physicochemical conditions may have triggered the precipitation of Bi melt, and sulfidation driven by cooling or increase in sulfur content results in the transformation of the Au-Bi liquid into a stable assemblage of native gold and bismuthinite. These bismuth minerals are associated with native gold/Au-bearing minerals, indicating that the Au mineralization of the Qiyugou gold deposit might be genetically associated with Bi melt. The present study highlights the role of Bi as important gold scavengers in arsenic-deficient ore-forming fluid.

  • The Dayingezhuang gold deposit in the Jiaodong district, eastern margin of the North China Craton is hosted in Mesozoic granitic rocks and consists of quartz-sulfide veins/veinlets and sulfide disseminations in alteration envelopes. Previous studies mainly focused on the geochronology, sources of ore-forming fluids and metals to investigate the ore genesis. However, enrichment mechanism of Au and other associated trace metals remain unclear. In this study, we present detailed textures and in-situ LA-ICP-MS trace-element compositions of different generations of pyrite, as well as EMP analysis of Au-bearing minerals to discuss the occurrence and enrichment mechanism of Au at this deposit. Three generations of pyrite (Py1, Py2 and Py3) formed during three hydrothermal ore stages (I, II, and III) at Dayingezhuang. Py1 occurs as disseminations in sericitic alteration assemblages and is characterized by low Au (mean 0.15 ppm), Ag, As and Te contents. The time-resolved depth-concentration profiles indicate that Au in Py1 mainly occurs as nanoparticles and/or micron-sized inclusions. Py2 can be further divided into the early undeformed Py2a and later Py2b, which is the product of deformed Py2a with different degrees of brittle to plastic deformation and recrystallization. Py2a in pyrite-siderite-quartz veins is relatively enriched in invisible Au (mean 0.41 ppm), Ag, As, and Te compared to Py1, and contains numerous micron-sized Au inclusions. In contrast, Py2b contains lesser invisible Au (0.21 ppm) and host abundant gold minerals along the grain boundaries and microfractures. Py3 in polymetallic sulfide veins has little Au. As a whole, Au in pyrite is positively correlated with Ag and Te, which is consistent with the results of EMP analysis showing the occurrence of Au as electrum, native gold and minor petzite in pyrite. Such evidences show that the deformation and recrystallization of auriferous Py2a potentially caused local remobilization of Au (mainly as micron-sized inclusion Au) via solid-state ductile flow and subsequent reconcentration of Au in microfractures of Py2b. The pyrite deformation and Au remobilization events were suggested to be related to the continuous reactivation of the regional Zhaoping Fault contemporaneous with gold mineralization. Our study highlights the importance of remobilization and reconcentration of Au triggered by syn-ore tectonic activities at Dayingezhuang and possibly other Au deposits in the Jiaodong district.

  • Exposure to continuous moderate noise levels is known to impair the auditory system leading to Noise-Induced Hearing Loss (NIHL) in animals including humans. The mechanism underlying noise-dependent auditory Temporary Threshold Shifts (TTS) is not fully understood. In fact, only limited information is available on vertebrates such as fishes, which share homologous inner ear structures to mammals and have the ability to regenerate hair cells. The zebrafish Danio rerio is a well-established model in hearing research providing an unmatched opportunity to investigate the molecular and physiological mechanisms of NIHL at the sensory receptor level. Here we investigated for the first time the effects of noise exposure on TTS and functional recovery in zebrafish, as well as the associated morphological damage and regeneration of the inner ear saccular hair cells. Adult specimens were exposed for 24h to white noise at various amplitudes (130, 140 and 150 dB re. 1 μPa) and their auditory sensitivity was subsequently measured with the Auditory Evoked Potential (AEP) recording technique. Sensory recovery was tested at different times post-treatment (after 3, 7 and 14 days) and compared to individuals kept under quiet lab conditions. Results revealed noise level-dependent TTS up to 33 dB and increase in response latency. Recovery of hearing function occurred within 7 days for fish exposed to 130 and 140 dB noise levels, while fish subject to 150 dB only returned to baseline thresholds after 14 days. Hearing impairment was accompanied by significant loss of hair cells only at the highest noise treatment. Full regeneration of the sensory tissue (number of hair cell receptors) occurred within 7 days, which was prior to functional recovery. We provide first baseline data of NIHL in zebrafish and validate this species as an effective vertebrate model to investigate the impact of noise exposure on the structure and function of the adult inner ear and its recovery process.

Last update from database: 4/19/24, 4:25 PM (UTC)