Your search
Results 56 resources
-
Monitoring signals such as fetal heart rate (FHR) are important indicators of fetal well-being. Computer-assisted analysis of FHR patterns has been successfully used as a decision support tool. However, the absence of a gold standard for the building blocks decision-making in the systems design process impairs the development of new solutions. Here we propose a prognostic model based on advanced signal processing techniques and machine learning algorithms for the fetal state assessment within a comprehensive evaluation process. Feature-engineering-based and time-series-based machine learning classifiers were modeled into three data segmentation schemas for CTU-UHB, HUFA, and DB-TRIUM datasets and the generalization performance was assessed by a two-way cross-dataset evaluation. It has been shown that the feature-based algorithms outperformed the time-series ones on data-limited scenarios. The Support Vector Machines (SVM) obtained the best results on the datasets individually: specificity (85.6% ) and sensitivity (67.5%). On the other hand, the most effective generalization results were achieved by the Multi-layer perceptron (MLP) with a specificity of 71.6% and sensitivity of 61.7%. The overall process provided a combination of techniques and methods that increased the final prognostic model performance, achieving relevant results and requiring a smaller amount of data when compared to the state-of-the-art fetal status assessment solutions.
-
The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they can provide for the current pandemic management. This work proposes using the susceptible-exposed-asymptomatic but infectious-symptomatic and infectious-recovered-deceased (SEAIRD) model for different learning models. The first analysis considers an unsupervised prediction, based directly on the epidemiologic compartmental model. After that, two supervised learning models are considered integrating computational intelligence techniques and control engineering: the fuzzy-PID and the wavelet-ANN-PID models. The purpose is to compare different predictor strategies to validate a viable predictive control system for the COVID19 relevant epidemiologic time series. For each model, after setting the initial conditions for each parameter, the prediction performance is calculated based on the presented data. The use of PID controllers is justified to avoid divergence in the system when the learning process is conducted. The wavelet neural network solution is considered here because of its rapid convergence rate. The proposed solutions are dynamic and can be adjusted and corrected in real time, according to the output error. The results are presented in each subsection of the chapter.
-
A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, was not originally designed for COVID19. We used the simple, commonly used SEIR model to retrospectively analyse the initial pandemic data from Singapore. Here, the SEIR model was combined with the actual published Singapore pandemic data, and the key parameters were determined by maximizing the nonlinear goodness of fit R2 and minimizing the root mean square error. These parameters served for the fast and directional convergence of the parameters of an improved model. To cover the quarantine and asymptomatic variables, the existing SEIR model was extended to an infectious disease model with a greater number of population compartments, and with parameter values that were tuned adaptively by solving the nonlinear dynamics equations over the available pandemic data, as well as referring to previous experience with SARS. The contribution presented in this paper is a new model called the adaptive SEAIRD model; it considers the new characteristics of COVID19 and is therefore applicable to a population including asymptomatic carriers. The predictive value is enhanced by tuning of the optimal parameters, whose values better reflect the current pandemic.
-
There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of time series under analysis from the available data. The establishment of multiple correlations and causality between the data allows modeling the variables and probabilistic distributions and subsequently obtaining also probabilistic results for time series forecasting. To improve the predictor efficiency, computational intelligence techniques are proposed, including a fuzzy inference system and an Artificial Neural Network architecture. This type of model is suitable to be considered not only for the disease monitoring and compartmental classes, but also for managerial data such as clinical resources, medical and health team allocation, and bed management, which are data related to complex decision-making challenges.
-
The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in history, and the most recent one has unique characteristics, which are tightly connected to the current society’s lifestyle and beliefs, creating an environment of uncertainty. Because of that, the development of mathematical/computational models to forecast the pandemic behavior since its beginning, i.e., with a restricted amount of data collected, is necessary. This chapter focuses on the analysis of different data mining techniques to allow the pandemic prediction with a small amount of data. A case study is presented considering the data from Wuhan, the Chinese city where the virus was first detected, and the place where the major outbreak occurred. The PNN + CF method (Polynomial Neural Network with Corrective Feedback) is presented as the technique with the best prediction performance. This is a promising method that might be considered in future eventual waves of the current pandemic or event to have a suitable model for future epidemic outbreaks around the world.
-
Consumers' selections and decision-making processes are some of the most exciting and challenging topics in neuromarketing, sales, and branding. Multicultural influences and societal conditions are also crucial aspects to consider from a global perspective. Applying neuroscience tools and techniques in international marketing and consumer behavior is an emergent and multidisciplinary field that aims to understand consumers' thoughts, reactions, and selection processes in branding and sales. This study focuses on real-time monitoring of different physiological signals using eye-tracking, facial expressions recognition, and Galvanic Skin Response (GSR) acquisition methods to analyze consumers' responses, detect emotional arousal, measure attention or relaxation levels, analyze perception, consciousness, memory, learning, motivation, preference, and decision-making. The primary purpose of this research was to monitor human subjects' reactions to these signals during an experiment designed in three phases consisting of different types of branding advertisements. The non-advertisement exposition was also monitored during the gathering of survey responses at the end of each phase. A feature extraction module was implemented with a data analytics module to calculate statistical metrics and decision-making supporting tools based on Principal Component Analysis (PCA) and Feature Importance (FI) determination based on the Random Forest technique. The results indicate that when compared to image ads, video ads are more effective in attracting consumers' attention and creating more emotional arousal.
-
The identification of barriers for e-commerce to thrive in specific countries is a topic of great interest. This work proposes two models to study the barriers to B2C e-commerce adoption in Portugal, highlighting obstacles less exploited by previous research: the impact of offline shopping pleasure and the influence of the distance to shopping malls on online shopping intent. An online survey was conducted based on different constructs. A multivariate OLS hierarchical regression was used to analyse the proposed models regarding the intention to buy online and the number of online purchases. The results revealed that customer satisfaction is a strong predictor of intent to buy online and that perceived product risk remains a barrier to e-commerce. Consumers living in high urbanised areas have more propensity to buy online. Helpful information is provided regarding the impact of context, culture, product, and individual barriers, showing that multichannel strategies are best suited for success.
-
Continuous cardiac monitoring has been increasingly adopted to prevent heart diseases, especially the case of Chagas disease, a chronic condition that can degrade the heart condition, leading to sudden cardiac death. Unfortunately, a common challenge for these systems is the low-quality and high level of noise in ECG signal collection. Also, generic techniques to assess the ECG quality can discard useful information in these so-called chagasic ECG signals. To mitigate this issue, this work proposes a 1D CNN network to assess the quality of the ECG signal for chagasic patients and compare it to the state of art techniques. Segments of 10 s were extracted from 200 1-lead ECG Holter signals. Different feature extractions were considered such as morphological fiducial points, interval duration, and statistical features, aiming to classify 400 segments into four signal quality types: Acceptable ECG, Non-ECG, Wandering Baseline (WB), and AC Interference (ACI) segments. The proposed CNN architecture achieves a $$0.90 \pm 0.02$$accuracy in the multi-classification experiment and also $$0.94 \pm 0.01$$when considering only acceptable ECG against the other three classes. Also, we presented a complementary experiment showing that, after removing noisy segments, we improved morphological recognition (based on QRS wave) by 33% of the entire ECG data. The proposed noise detector may be applied as a useful tool for pre-processing chagasic ECG signals.
-
The adoption of computer-aided diagnosis and treatment systems based on different types of artificial neural networks (ANNs) is already a reality in several hospital and ambulatory premises. This chapter aims to present a discussion focused on the challenges and trends of adopting these computerized systems, highlighting solutions based on different types and approaches of ANN, more specifically, feed-forward, recurrent, and deep convolutional architectures. One section is focused on the application of AI/ANN solutions to support cardiology in different applications, such as the classification of the heart structure and functional behavior based on echocardiography images; the automatic analysis of the heart electric activity based on ECG signals; and the diagnosis support of angiogram images during surgical interventions. Finally, a case study is presented based on the application of a deep learning convolutional network together with a recent technique called transfer learning to detect brain tumors using an MRI images data set. According to the findings, the model has a high degree of specificity (precision of 0.93 and recall of 0.94 for images with no brain tumor) and can be used as a screening tool for images that do not contain a brain tumor. The f1-score for images with brain tumor was 0.93. The results achieved are very promising and the proposed solution may be considered to be used as a computer-aided diagnosis tool based on deep learning convolutional neural networks. Future works will consider other techniques and compare them with the one presented here. With the comprehensive approach and overview of multiple applications, it is valid to conclude that computer-aided diagnosis and treatment systems are important tools to be considered today and will be an essential part of the trend of personalized medicine over the coming years.
-
The adoption of IoT for smart health applications is a relevant tool for distributed and intelligent automatic diagnostic systems. This work proposes the development of an integrated solution to monitor maternal and fetal signals for high-risk pregnancies based on IoT sensors, feature extraction based on data analytics, and an intelligent diagnostic aid system based on a 1-D convolutional neural network (CNN) classifier. The fetal heart rate and a group of maternal clinical indicators, such as the uterine tonus activity, blood pressure, heart rate, temperature, and oxygen saturation are monitored. Multiple data sources generate a significant amount of data in different formats and rates. An emergency diagnostic subsystem is proposed based on a fog computing layer and the best accuracy was 92.59% for both maternal and fetal emergency. A smart health analytics system is proposed for multiple feature extraction and the calculation of linear and nonlinear measures. Finally, a classification technique is proposed as a prediction system for maternal, fetal, and simultaneous health status classification, considering six possible outputs. Different classifiers are evaluated and a proposed CNN presented the best results, with the F1-score ranging from 0.74 to 0.91. The results are validated based on the diagnosis provided by two specialists. The results show that the proposed system is a viable solution for maternal and fetal ambulatory monitoring based on IoT.
-
Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms. Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19 Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification scenarios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All vs. All). Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of F1–Score; (2) Low vs. Severe - Accuracy of 91.67% and an F1–Score of 94.92%; (3) Moderate vs. Severe - Accuracy of 94.12% and an F1–Score of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of F1–Score. Conclusion: The results indicate that the applied methodology could be considered a good tool for distinguishing COVID-19’s different severity stages using ECG signals. Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination. In comparison to previous studies using the same database, this study shows a 7.57% improvement in diagnostic accuracy for the All vs All comparison.
-
Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.
-
The COVID-19 pandemic has posed a significant public health challenge on a global scale. It is imperative that we continue to undertake research in order to identify early markers of disease progression, enhance patient care through prompt diagnosis, identification of high-risk patients, early prevention, and efficient allocation of medical resources. In this particular study, we obtained 100 5-min electrocardiograms (ECGs) from 50 COVID-19 volunteers in two different positions, namely upright and supine, who were categorized as either moderately or critically ill. We used classification algorithms to analyze heart rate variability (HRV) metrics derived from the ECGs of the volunteers with the goal of predicting the severity of illness. Our study choose a configuration pro SVC that achieved 76% of accuracy, and 0.84 on F1 Score in predicting the severity of Covid-19 based on HRV metrics.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Business and Law
(38)
- Alexandre Lobo (38)
- Douty Diakite (1)
- Ivan Arraut (2)
- Sergio Gomes (1)
-
Institute for Data Engineering and Sciences
(2)
- George Du Wencai (2)
Resource type
- Book (1)
- Book Section (17)
- Conference Paper (4)
- Journal Article (16)
- Preprint (2)
- Thesis (16)
United Nations SDGs
Publication year
-
Between 2000 and 2024
(56)
-
Between 2010 and 2019
(3)
- 2019 (3)
- Between 2020 and 2024 (53)
-
Between 2010 and 2019
(3)