Your search
Results 9 resources
-
In recent years, the integration of Machine Learning (ML) techniques in the field of healthcare and public health has emerged as a powerful tool for improving decision-making processes [...]
-
It is plausible to assume that the component waves in ECG signals constitute a unique human characteristic because morphology and amplitudes of recorded beats are governed by multiple individual factors. According to the best of our knowledge, the issue of automatically classifying different ’identities’ of QRS morphology has not been explored within the literature. This work proposes five alternative mathematical models for representing different QRS morphologies providing the extraction of a set of features related to QRS shape. The technique incorporates mechanisms of combining the mathematical functions Gaussian, Mexican-Hat and Rayleigh probability density function and also a mechanism for clipping the waveform of those functions. The searching for the optimal parameters which minimize the normalized RMS error between each mathematical model and a given QRS search window enables to find an optimal model. Such modeling behaves as a robust alternative for delineating heartbeats, classifying beat morphologies, detecting subtle and anomalous changes, compression of QRS complex windows among others. The validation process evaluates the ability of each model to represent different QRS morphology classes within 159 full ECG signal records from QT database and 584 QRS search windows from MIT-BIH Arrhythmia database. From the experimental results, we rank the winning rates for which each mathematical model best models and also discriminates the most predominant QRS morphologies Rs, rS, RS, qR, qRs, R, rR’s and QS. Furthermore, the average time errors computed for QRS onset and offset locations when using the corresponding winner mathematical models for delineation purposes were, respectively, 12.87±8.5 ms and 1.47±10.06 ms.
-
Monitoring signals such as fetal heart rate (FHR) are important indicators of fetal well-being. Computer-assisted analysis of FHR patterns has been successfully used as a decision support tool. However, the absence of a gold standard for the building blocks decision-making in the systems design process impairs the development of new solutions. Here we propose a prognostic model based on advanced signal processing techniques and machine learning algorithms for the fetal state assessment within a comprehensive evaluation process. Feature-engineering-based and time-series-based machine learning classifiers were modeled into three data segmentation schemas for CTU-UHB, HUFA, and DB-TRIUM datasets and the generalization performance was assessed by a two-way cross-dataset evaluation. It has been shown that the feature-based algorithms outperformed the time-series ones on data-limited scenarios. The Support Vector Machines (SVM) obtained the best results on the datasets individually: specificity (85.6% ) and sensitivity (67.5%). On the other hand, the most effective generalization results were achieved by the Multi-layer perceptron (MLP) with a specificity of 71.6% and sensitivity of 61.7%. The overall process provided a combination of techniques and methods that increased the final prognostic model performance, achieving relevant results and requiring a smaller amount of data when compared to the state-of-the-art fetal status assessment solutions.
-
Continuous cardiac monitoring has been increasingly adopted to prevent heart diseases, especially the case of Chagas disease, a chronic condition that can degrade the heart condition, leading to sudden cardiac death. Unfortunately, a common challenge for these systems is the low-quality and high level of noise in ECG signal collection. Also, generic techniques to assess the ECG quality can discard useful information in these so-called chagasic ECG signals. To mitigate this issue, this work proposes a 1D CNN network to assess the quality of the ECG signal for chagasic patients and compare it to the state of art techniques. Segments of 10 s were extracted from 200 1-lead ECG Holter signals. Different feature extractions were considered such as morphological fiducial points, interval duration, and statistical features, aiming to classify 400 segments into four signal quality types: Acceptable ECG, Non-ECG, Wandering Baseline (WB), and AC Interference (ACI) segments. The proposed CNN architecture achieves a $$0.90 \pm 0.02$$accuracy in the multi-classification experiment and also $$0.94 \pm 0.01$$when considering only acceptable ECG against the other three classes. Also, we presented a complementary experiment showing that, after removing noisy segments, we improved morphological recognition (based on QRS wave) by 33% of the entire ECG data. The proposed noise detector may be applied as a useful tool for pre-processing chagasic ECG signals.
-
The adoption of IoT for smart health applications is a relevant tool for distributed and intelligent automatic diagnostic systems. This work proposes the development of an integrated solution to monitor maternal and fetal signals for high-risk pregnancies based on IoT sensors, feature extraction based on data analytics, and an intelligent diagnostic aid system based on a 1-D convolutional neural network (CNN) classifier. The fetal heart rate and a group of maternal clinical indicators, such as the uterine tonus activity, blood pressure, heart rate, temperature, and oxygen saturation are monitored. Multiple data sources generate a significant amount of data in different formats and rates. An emergency diagnostic subsystem is proposed based on a fog computing layer and the best accuracy was 92.59% for both maternal and fetal emergency. A smart health analytics system is proposed for multiple feature extraction and the calculation of linear and nonlinear measures. Finally, a classification technique is proposed as a prediction system for maternal, fetal, and simultaneous health status classification, considering six possible outputs. Different classifiers are evaluated and a proposed CNN presented the best results, with the F1-score ranging from 0.74 to 0.91. The results are validated based on the diagnosis provided by two specialists. The results show that the proposed system is a viable solution for maternal and fetal ambulatory monitoring based on IoT.
-
The adoption of computer-aided diagnosis and treatment systems based on different types of artificial neural networks (ANNs) is already a reality in several hospital and ambulatory premises. This chapter aims to present a discussion focused on the challenges and trends of adopting these computerized systems, highlighting solutions based on different types and approaches of ANN, more specifically, feed-forward, recurrent, and deep convolutional architectures. One section is focused on the application of AI/ANN solutions to support cardiology in different applications, such as the classification of the heart structure and functional behavior based on echocardiography images; the automatic analysis of the heart electric activity based on ECG signals; and the diagnosis support of angiogram images during surgical interventions. Finally, a case study is presented based on the application of a deep learning convolutional network together with a recent technique called transfer learning to detect brain tumors using an MRI images data set. According to the findings, the model has a high degree of specificity (precision of 0.93 and recall of 0.94 for images with no brain tumor) and can be used as a screening tool for images that do not contain a brain tumor. The f1-score for images with brain tumor was 0.93. The results achieved are very promising and the proposed solution may be considered to be used as a computer-aided diagnosis tool based on deep learning convolutional neural networks. Future works will consider other techniques and compare them with the one presented here. With the comprehensive approach and overview of multiple applications, it is valid to conclude that computer-aided diagnosis and treatment systems are important tools to be considered today and will be an essential part of the trend of personalized medicine over the coming years.
-
Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms. Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19 Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification scenarios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All vs. All). Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of F1–Score; (2) Low vs. Severe - Accuracy of 91.67% and an F1–Score of 94.92%; (3) Moderate vs. Severe - Accuracy of 94.12% and an F1–Score of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of F1–Score. Conclusion: The results indicate that the applied methodology could be considered a good tool for distinguishing COVID-19’s different severity stages using ECG signals. Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination. In comparison to previous studies using the same database, this study shows a 7.57% improvement in diagnostic accuracy for the All vs All comparison.
-
The COVID-19 pandemic has posed a significant public health challenge on a global scale. It is imperative that we continue to undertake research in order to identify early markers of disease progression, enhance patient care through prompt diagnosis, identification of high-risk patients, early prevention, and efficient allocation of medical resources. In this particular study, we obtained 100 5-min electrocardiograms (ECGs) from 50 COVID-19 volunteers in two different positions, namely upright and supine, who were categorized as either moderately or critically ill. We used classification algorithms to analyze heart rate variability (HRV) metrics derived from the ECGs of the volunteers with the goal of predicting the severity of illness. Our study choose a configuration pro SVC that achieved 76% of accuracy, and 0.84 on F1 Score in predicting the severity of Covid-19 based on HRV metrics.
Explore
Academic Units
Resource type
- Book Section (3)
- Conference Paper (1)
- Journal Article (5)