Your search
Results 49 resources
-
<jats:p>Causal machine learning is an approach that combines causal inference and machine learning to understand and utilize causal relationships in data. In current research and applications, traditional machine learning and deep learning models always focus on prediction and pattern recognition. In contrast, causal machine learning goes a step further by revealing causal relationships between different variables. We explore a novel concept called Double Machine Learning that embraces causal machine learning in this research. The core goal is to select independent variables from a gesture identification problem that are causally related to final gesture results. This selection allows us to classify and analyze gestures more efficiently, thereby improving models’ performance and interpretability. Compared to commonly used feature selection methods such as Variance Threshold, Select From Model, Principal Component Analysis, Least Absolute Shrinkage and Selection Operator, Artificial Neural Network, and TabNet, Double Machine Learning methods focus more on causal relationships between variables rather than correlations. Our research shows that variables selected using the Double Machine Learning method perform well under different classification models, with final results significantly better than those of traditional methods. This novel Double Machine Learning-based approach offers researchers a valuable perspective for feature selection and model construction. It enhances the model’s ability to uncover causal relationships within complex data. Variables with causal significance can be more informative than those with only correlative significance, thus improving overall prediction performance and reliability.</jats:p>
-
Consumer neuroscience analyzes individuals’ preferences through the assessment of physiological data monitoring, considering brain activity or other bioinformation to assess purchase decisions. Traditional marketing tactics include customer surveys, product evaluations, and comments. For product or brand marketing and mass production, it is important to understand consumer neurological responses when seeing an ad or testing a product. In this work, we use the bi-clustering method to reduce EEG noise and automatic machine learning to classify brain responses. We analyze a neuromarketing EEG dataset that contains EEG data from product evaluations from 25 participants, collected with a 14 channel Emotiv Epoch + device, while examining consumer items. Four components comprised the research methodology. Initially, the Welch Transform was used to filter the EEG raw data. Second, the best converted signal biclusterings are used to train different classification models. Each biclustering is evaluated with a separate classifier, considering F1-Score. After that, the H2O.ai AutoML library is used to select the optimal biclustering and models. Instead of traditional procedures, two thresholds are used. First-threshold values indicate customer satisfaction. Low values of the second threshold reflect consumer dissatisfaction. Values between the first and second criteria are classified as uncertain values. We outperform the state of the art with a 0.95 F1-Score value.
-
This paper presents an algorithm that applies metrics derived from automatic QRS detection and segmentation in electrocardiogram signals for analyzing Heart Rate Variability to study the evolution of metrics in the frequency domain of a clinical procedure. The analysis was performed on three sets of elderly people, who are categorized according to frailty phenotype. The first set was comprised of frail elderly, the second pre-frail elderly, and the third robust elderly. Investigators from many disciplines have been encouraged to contribute to the understanding of molecular and physiological changes in multiple systems that may increase the vulnerability of frail elderly. In this work, the frailty phenotype can be characterized by unintentional weight loss, as self-reported, fatigue assessed by self-report, grip strength (measured directly), physical activity level assessed by self-report and gait speed (measured). The results obtained demonstrate the existence of significant differences between Heart Rate Variability metrics for the three groups, especially considering a higher preponderance for sympathetic nervous system for the group of robust patients in response to postural maneuver.
-
The scientific literature indicates that pregnant women with COVID-19 are at an increased risk for developing more severe illness conditions when compared with non-pregnant women. The risk of admission to an ICU (Intensive Care Unit) and the need for mechanical ventilator support is three times higher. More significantly, statistics indicate that these patients are also at 70% increased risk of evolving to severe states or even death. In addition, other previous illnesses and age greater than 35 years old increase the risk for the mother and the fetus, including a higher number of cesarean sections, higher systolic and diastolic maternal blood pressure, increasing the risk of eclampsia, and, in some cases, preterm birth. Additionally, pregnant women have more Emotional lability/fluctuations (between positive and negative feelings) during the entire pregnancy. The emotional instability and brain fog that takes place during gestation may open vulnerability for neuropsychiatric symptoms of long COVID, which this population was not studied in depth. The present Chapter characterizes the database presented in this work with clinical and survey data collected about emotions and feelings using the Coronavirus Perinatal Experiences—Impact Survey (COPE-IS). Pregnant women with or without COVID-19 symptoms who gave birth at the Assis Chateaubriand Maternity Hospital (MEAC), a public maternity of the Federal University of Ceara, Brazil, were recruited. In total, 72 mother-infant dyads were included in the study and are considered in this exploratory analysis. The participants have undergone serological tests for SARS-CoV-2 antibody detection and a nasopharyngeal swab test for COVID-19 diagnoses by RT-PCR. A comprehensive Exploratory Data Analysis (EDA) is performed using frequency distribution analysis of multiple types of variables generated from numerical data, multiple-choice, categorized, and Likert-scale questions.
-
Introduction: SARS-CoV-2, a virus responsible for the emergence of the life-threatening disease known as COVID-19, exhibits a diverse range of clinical manifestations. The spectrum of symptoms varies widely, encompassing mild to severe presentations, while a considerable portion of the population remains asymptomatic. COVID-19, primarily a respiratory virus, has been linked to cardiovascular complications in some patients. Notably, cardiac issues can also arise after recovery, contributing to post-acute COVID-19 syndrome, a significant concern for patient health. The present study intends to evaluate the post-acute COVID-19 syndrome cardiovascular effect through ECG by comparing patients affected with cardiac diseases without COVID-19 diagnosis report (class 1) and patients with cardiac pathologies who present post-acute COVID-19 syndrome (class 2). Methods: From 2 body positions, a total of 10 non-linear features, extracted every 1 second under a multi-band analysis performed by Discrete Wavelet Transform (DWT), have been compressed by 6 statistical metrics to serve as inputs for an individual feature analysis by the means of Mann-Whitney U-test and XROC classification. Results and Discussion: 480 Mann-Whitney U-test statistical analyses and XROC discrimination approaches have been done. The percentage of statistical analysis with significant differences (p<0.05) was 30.42% (146 out of 480). The best overall results were obtained by approximating the feature Energy, with the data compressor Kurtosis in the body position Down. Those results were 83.33% of Accuracy, 83.33% of Sensitivity, 83.33% of Specificity and 87.50% of AUC. Conclusions: The results show that the applied methodology can be a way to show changes in cardiac behaviour provoked by post-acute COVID-19 syndrome.
-
This work provides a comprehensive systematic review of optimization techniques using artificial intelligence (AI) for energy storage systems within renewable energy setups. The primary goals are to evaluate the latest technologies employed in forecasting models for renewable energy generation, load forecasting, and energy storage systems, alongside their construction parameters and optimization methods. The review highlights the progress achieved, identifies current challenges, and explores future research directions. Despite the extensive application of machine learning (ML) and deep learning (DL) in renewable energy generation, consumption patterns, and storage optimization, few studies integrate these three aspects simultaneously, underscoring the significance of this work. The review encompasses studies from Web of Science, Scopus, and Science Direct up to December 2023, including works scheduled for publication in 2024. Each study related to renewable energy storage was individually analyzed to assess its objectives, methodology, and results. The findings reveal useful insights for developing AI models aimed at optimizing storage systems. However, critical areas need further exploration, such as real-time forecasting, long-term storage predictions, hybrid neural networks for demand-based generation forecasting, and the evaluation of various storage scales and battery technologies. The review also notes a significant gap in research on large-scale storage systems in Brazil and Latin America. In conclusion, the study emphasizes the need for continued research and the development of new algorithms to address existing limitations in the field.
-
The area of clinical decision support systems (CDSS) is facing a boost in research and development with the increasing amount of data in clinical analysis together with new tools to support patient care. This creates a vibrant and challenging environment for the medical and technical staff. This chapter presents a discussion about the challenges and trends of CDSS considering big data and patient-centered constraints. Two case studies are presented in detail. The first presents the development of a big data and AI classification system for maternal and fetal ambulatory monitoring, composed by different solutions such as the implementation of an Internet of Things sensors and devices network, a fuzzy inference system for emergency alarms, a feature extraction model based on signal processing of the fetal and maternal data, and finally a deep learning classifier with six convolutional layers achieving an F1-score of 0.89 for the case of both maternal and fetal as harmful. The system was designed to support maternal–fetal ambulatory premises in developing countries, where the demand is extremely high and the number of medical specialists is very low. The second case study considered two artificial intelligence approaches to providing efficient prediction of infections for clinical decision support during the COVID-19 pandemic in Brazil. First, LSTM recurrent neural networks were considered with the model achieving R2=0.93 and MAE=40,604.4 in average, while the best, R2=0.9939, was achieved for the time series 3. Second, an open-source framework called H2O AutoML was considered with the “stacked ensemble” approach and presented the best performance followed by XGBoost. Brazil has been one of the most challenging environments during the pandemic and where efficient predictions may be the difference in saving lives. The presentation of such different approaches (ambulatory monitoring and epidemiology data) is important to illustrate the large spectrum of AI tools to support clinical decision-making.
-
Objetivo: Explorar a aplicação de inteligência artificial (IA) na predição da idade óssea a partir de imagens de raios-X. Método: Utilizou-se a Metodologia Interdisciplinar para o Desenvolvimento de Tecnologias em Saúde (MIDTS) para desenvolver uma ferramenta de predição. O treinamento foi realizado com redes neurais convolucionais (CNNs) usando um conjunto de dados de 14.036 imagens de raios-X. Resultados: A ferramenta alcançou um coeficiente de determinação (R²) de 0,94807 e um Erro Médio Absoluto (MAE) de 6,97, destacando sua precisão e potencial de aplicação clínica. Conclusão: O projeto demonstrou grande potencial para aprimorar a predição da idade óssea, com possibilidades de evolução conforme a base de dados aumenta e a IA se torna mais sofisticada.
-
Following the World Health Organization proclaims a pandemic due to a disease that originated in China and advances rapidly across the globe, studies to predict the behavior of epidemics have become increasingly popular, mainly related to COVID-19. The critical point of these studies is to discuss the disease's behavior and the progression of the virus's natural course. However, the prediction of the actual number of infected people has proved to be a difficult task, due to a wide range of factors, such as mass testing, social isolation, underreporting of cases, among others. Therefore, the objective of this work is to understand the behavior of COVID-19 in the state of Ceará to forecast the total number of infected people and to aid in government decisions to control the outbreak of the virus and minimize social impacts and economics caused by the pandemic. So, to understand the behavior of COVID-19, this work discusses some forecast techniques using machine learning, logistic regression, filters, and epidemiologic models. Also, this work brings a new approach to the problem, bringing together data from Ceará with those from China, generating a hybrid dataset, and providing promising results. Finally, this work still compares the different approaches and techniques presented, opening opportunities for future discussions on the topic. The study obtains predictions with R2 score of 0.99 to short-term predictions and 0.93 to long-term predictions.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(48)
- Alexandre Lobo (48)
- Emil Marques (1)
- Ivan Arraut (1)
- Jenny Phillips (1)
- Sergio Gomes (1)
Resource type
- Book (2)
- Book Section (14)
- Conference Paper (12)
- Journal Article (20)
- Thesis (1)
United Nations SDGs
Publication year
- Between 2000 and 2025 (49)