Your search
Results 32 resources
-
The global pandemic triggered by the Corona Virus Disease firstly detected in 2019 (COVID-19), entered the fourth year with many unknown aspects that need to be continuously studied by the medical and academic communities. According to the World Health Organization (WHO), until January 2023, more than 650 million cases were officially accounted (with probably much more non tested cases) with 6,656,601 deaths officially linked to the COVID-19 as plausible root cause. In this Chapter, an overview of some relevant technical aspects related to the COVID-19 pandemic is presented, divided in three parts. First, the advances are highlighted, including the development of new technologies in different areas such as medical devices, vaccines, and computerized system for medical support. Second, the focus is on relevant challenges, including the discussion on how computerized diagnostic supporting systems based on Artificial Intelligence are in fact ready to effectively help on clinical processes, from the perspective of the model proposed by NASA, Technology Readiness Levels (TRL). Finally, two trends are presented with increased necessity of computerized systems to deal with the Long Covid and the interest on Precision Medicine digital tools. Analyzing these three aspects (advances, challenges, and trends) may provide a broader understanding of the impact of the COVID-19 pandemic on the development of Computerized Diagnostic Support Systems.
-
Citizens' trust in eGovernment is crucial for the successful implementation of new electronic services. This relationship in the Greater Bay Area (GBA) plays an essential role since the Government services rely on mobile mini-programs This study investigates the trust towards government service mini-programs in WeChat and Alipay. A user feedback questionnaire was designed, and a total of 609 valid samples were collected from Shenzhen, Guangzhou, Hong Kong, and Macau. The findings imply that competence, integrity, and benevolence are the key components of trust in e-government (TIEG). TIEG positively influences perceived value (PV), which positively affects citizens' Intention to adopt service mini-programs. PV significantly mediates the relationship between TIEG and Intention. Although TIEG does not effectively reduce perceived risk (PR), risk issues cannot be ignored in the adoption process. Finally, this article proposes relevant implications and suggestions for the GBA government agents and policy makers.
-
Covid-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting against the virus, enormously tap on the power of AI and its data analytics models for urgent decision supports at the greatest efforts, ever seen from human history. This book showcases a collection of important data analytics models that were used during the epidemic, and discusses and compares their efficacy and limitations. Readers who from both healthcare industries and academia can gain unique insights on how data analytics models were designed and applied on epidemic data. Taking Covid-19 as a case study, readers especially those who are working in similar fields, would be better prepared in case a new wave of virus epidemic may arise again in the near future.
-
Neuromarketing lies at the intersection of three main disciplines: psychology, neuroscience, and marketing, and it has been a successful neuroscientific approach for the study of real-life choices such as consumer behavior [1]. A current gap in the cosmetics field is the lack of published research studies, considering the marketing investment done yearly in this category. With the rapid economic expansion and the rise of social media in China, consumers' interest in beauty is growing. Even though the Chinese cosmetics sector is rapidly expanding, no studies have been done with Chinese consumers. This study aims to employ the same approach as previously done in consumer neuroscience studies to evaluate cosmetic brands' marketing strategy to understand better if immediate emotional responses can be measured using Electrodermal Activity (EDA). Here, we focus on cosmetics products advertisement as a model to understand consumer preference formation and choice. Eighteen Chinese female consumers were recruited between 19 and 37 years old. From the results obtained, it was understood that none of the participants have voted for the product advertisement for which they showed higher emotional arousal. However, it appears that the participants' preference is for the products for which the brand awareness is stronger since the product advertisements with more votes are the ones for the Korean brand used. The product advertisements with Asian faces were the ones with more votes, suggesting that Asian faces have engaged consumer preference. However, the product advertisements for the Brazilian brands, unknown to the Chinese public, were the ones with fewer votes, although, those product advertisements were the ones with more emotional arousal per minute. Those advertisements were also those with non-Asian faces, suggesting that this feature influenced voting decisions. From this study, it has been observed that Electrodermal Activity is a measure of emotional arousal that by itself cannot be translated into consumer engagement. Therefore, it is also proposed to evaluate brand awareness in future studies related to product advertisements. The physical features of the people included in the advertisements is also suggested to be further evaluated in future studies since a different cultural background seems to influence the consumers' engagement. Furthermore, using EDA to complement other neurophysiological tools like facial expression analysis is also suggested for future studies to have evidence about the nature of the emotions raised.
-
The classification of emotions based on facial expressions have been a new topic of research in recent years, especially in marketing and consumer behavior areas. However, there is lack of studies to understand how the research topic is developed in terms of bibliometric data. Therefore, the purpose of this work is to provide a bibliometric analysis of the research on the analysis of facial expressions for marketing and consumer behavior, identifying the state of the art, the latest research direction, and other indicators. We extracted data from Web of Science (WOS) platform, considering its core database, resulting in a total of 117 articles. The software Vosviewer was used to analyze the data and graphically visualize the results. This study indicates some of the most influential authors citations and coupling analysis in this specific field, identifies journals with the most published articles, and provide trends of the research area based on the analysis of keywords and corresponding number of articles per year. The results shows that 11 articles (9.4%) were cited more than 100 times, and the two most prolific authors published 5 articles, and the two most influential authors are Bouaziz Sofien and Pauly mark(270 citations) in this field. Of the 117 articles retrieved by WOS, more than 70% were published in high impact journals. The bibliometric analysis of the existing work in this study provides a valuable and reliable reference for researchers in this field and makes a reasonable prediction of the research direction trends.
-
Stock price prediction has always been challenging due to its volatility and unpredictability. This paper performs a preliminary exploratory comparison that utilizes Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) algorithms to forecast the stock market in Hong Kong. It considers a public dataset publicly available and uses feature engineering to extract relevant features. Then, LSTM and SVM algorithms are applied to predict stock prices. Our results show that the proposed machine learning techniques can predict stock prices in Hong Kong's share market with the error metrics presented, and, for this purpose, LSTM achieved better results than SVM, with MSE = 0.0026, RMSE = 0.0508, MAE = 0.0406, and MAPE = 1.325.
-
The use of computational tools for medical image processing are promising tools to effectively detect COVID-19 as an alternative to expensive and time-consuming RT-PCR tests. For this specific task, CXR (Chest X-Ray) and CCT (Chest CT Scans) are the most common examinations to support diagnosis through radiology analysis. With these images, it is possible to support diagnosis and determine the disease’s severity stage. Computerized COVID-19 quantification and evaluation require an efficient segmentation process. Essential tasks for automatic segmentation tools are precisely identifying the lungs, lobes, bronchopulmonary segments, and infected regions or lesions. Segmented areas can provide handcrafted or self-learned diagnostic criteria for various applications. This Chapter presents different techniques applied for Chest CT Scans segmentation, considering the state of the art of UNet networks to segment COVID-19 CT scans and a segmentation experiment for network evaluation. Along 200 epochs, a dice coefficient of 0.83 was obtained.
-
Human resources are essential to the survival, success, and long-term growth of a company. Hotel is an industry requiring a high level of human resources for delivering high-quality personal service to the hotel guests to maintain its competitiveness in the business environment. With the rapid economic growth in Macao started in 2002, all the industries have been growing fast and competing fiercely for the limited manpower in Macao. However, the Macao hotel industry has been losing its attractiveness in the Macao labor market and needs to rely on non-local workers with a limited stay in Macao. The management team of the Macao hotel industry is looking for a solution to maintain a stable workforce. Therefore, a study has been conducted on the effectiveness of its employee retention strategies. A questionnaire was designed to collect the preferences of the employees and interviews were conducted to understand the perspective of the management team toward the employee retention strategies. The study shows the employee strategies are focused on key employees’ interests such as career development and prospect. However, the communication between the management team and employees failed and led to employee turnover.
-
This research aims to evaluate a Macau tea brand's social media advertising effectiveness with neuromarketing tools, including physiological monitoring that can measure emotional arousal. This research bridges the gap of social media marketing on Instagram for brands through the neuromarketing method. Data from 40 respondents were collected with iMotions software using neuroscientific tools. This research uses the stimuli of Guanding Teahouse, a newly established Macau tea brand, to evaluate social media advertising effectiveness. The neuroscientific tools – Galvanic Skin Response (GSR) sensors, Eye-tracking, Facial Expression Analysis (FEA) and emotion analysis are used to do the experiment. The data analysis was drawn from one representative respondent to measure the emotions and attention on the Instagram advertisements. Video 1 recorded 9 GSR peaks and Video 2 recorded 12 GSR peaks, both videos attention is ranging between 96-98 indexes. Results show that advertising videos should focus more on the products than the model. Moreover, the participant is more interested in Video 2, but the effectiveness of advertising is showing a lower focus on the brand and the tea. Future studies should consider comparing the video advertising effectiveness of Instagram stories and Instagram reels to prevent disruption of video on the stories ad.
-
COVID-19 is a respiratory disorder caused by CoronaVirus and SARS (SARS-CoV2). WHO declared COVID-19 a global pandemic in March 2020 and several nations’ healthcare systems were on the verge of collapsing. With that, became crucial to screen COVID-19-positive patients to maximize limited resources. NAATs and antigen tests are utilized to diagnose COVID-19 infections. NAATs reliably detect SARS-CoV-2 and seldom produce false-negative results. Because of its specificity and sensitivity, RT-PCR can be considered the gold standard for COVID-19 diagnosis. This test’s complex gear is pricey and time-consuming, using skilled specialists to collect throat or nasal mucus samples. These tests require laboratory facilities and a machine for detection and analysis. Deep learning networks have been used for feature extraction and classification of Chest CT-Scan images and as an innovative detection approach in clinical practice. Because of COVID-19 CT scans’ medical characteristics, the lesions are widely spread and display a range of local aspects. Using deep learning to diagnose directly is difficult. In COVID-19, a Transformer and Convolutional Neural Network module are presented to extract local and global information from CT images. This chapter explains transfer learning, considering VGG-16 network, in CT examinations and compares convolutional networks with Vision Transformers (ViT). Vit usage increased VGG-16 network F1-score to 0.94.
-
This chapter describes an AUTO-ML strategy to detect COVID on chest X-rays utilizing Transfer Learning feature extraction and the AutoML TPOT framework in order to identify lung illnesses (such as COVID or pneumonia). MobileNet is a lightweight network that uses depthwise separable convolution to deepen the network while decreasing parameters and computation. AutoML is a revolutionary concept of automated machine learning (AML) that automates the process of building an ML pipeline inside a constrained computing framework. The term “AutoML” can mean a number of different things depending on context. AutoML has risen to prominence in both the business world and the academic community thanks to the ever-increasing capabilities of modern computers. Python Optimised ML Pipeline (TPOT) is a Python-based ML tool that optimizes pipeline efficiency via genetic programming. We use TPOT builds models for extracted MobileNet network features from COVID-19 image data. The f1-score of 0.79 classifies Normal, Viral Pneumonia, and Lung Opacity.
-
The spontaneous symmetry breaking phenomena applied to Quantum Finance considers that the martingale state in the stock market corresponds to a ground (vacuum) state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena completely ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock markets.
-
China growing awareness of sustainability has brought out relevant aspects to move towards a green environment. Since its subscription in 2016, China has been committed to implementing the Paris Agreement, and the Greater Bay Area (GBA) development plan prioritizes ecology and pursuing green development. The primary purpose of this research is to perceive the companies' insights concerning the implementation of sustainable buildings’ projects in Macau. For this multi-case study analysis, primary data was gathered from interviews with two groups involved in the construction projects’ lifecycle: Consultants and Contractors, to analyze different perceptions and concerns. The interviews considered two different themes about the main topic: (1) Perception on Companies’ Experience in Sustainable Projects; (2) Key Drivers towards Sustainable Buildings’ Projects’ Implementation. In conclusion, according to the analyzed data, it is essential to notice that companies’ background and the market particularities affect their corporate performance specially connected to the green construction frameworks. The data also indicate that it is necessary to move towards regulations and policies to change corporate and people's mindset.
-
The gold standard to detect SARS-CoV-2 infection considers testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. In parallel, X-Ray and CT scans play an important role in the diagnosis and treatment processes. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are typical characteristics of pneumonia caused by COVID-19. This chapter presents an AI-based system using multiple Transfer Learning models for COVID-19 classification using Chest X-Rays. In our experimental design, all the classifiers demonstrated satisfactory accuracy, precision, recall, and specificity performance. On the one hand, the Mobilenet architecture outperformed the other CNNs, achieving excellent results for the evaluated metrics. On the other hand, Squeezenet presented a regular result in terms of recall. In medical diagnosis, false negatives can be particularly harmful because a false negative can lead to patients being incorrectly diagnosed as healthy. These results suggest that our Deep Learning classifiers can accurately classify X-ray exams as normal or indicative of COVID-19 with high confidence.
-
The Covid-19 pandemic evidenced the need Computer Aided Diagnostic Systems to analyze medical images, such as CT and MRI scans and X-rays, to assist specialists in disease diagnosis. CAD systems have been shown to be effective at detecting COVID-19 in chest X-ray and CT images, with some studies reporting high levels of accuracy and sensitivity. Moreover, it can also detect some diseases in patients who may not have symptoms, preventing the spread of the virus. There are some types of CAD systems, such as Machine and Deep Learning-based and Transfer learning-based. This chapter proposes a pipeline for feature extraction and classification of Covid-19 in X-ray images using transfer learning for feature extraction with VGG-16 CNN and machine learning classifiers. Five classifiers were evaluated: Accuracy, Specificity, Sensitivity, Geometric mean, and Area under the curve. The SVM Classifier presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results, achieving 33.9% and 54.07%, respectively.
-
Even with more than 12 billion vaccine doses administered globally, the Covid-19 pandemic has caused several global economic, social, environmental, and healthcare impacts. Computer Aided Diagnostic (CAD) systems can serve as a complementary method to aid doctors in identifying regions of interest in images and help detect diseases. In addition, these systems can help doctors analyze the status of the disease and check for their progress or regression. To analyze the viability of using CNNs for differentiating Covid-19 CT positive images from Covid-19 CT negative images, we used a dataset collected by Union Hospital (HUST-UH) and Liyuan Hospital (HUST-LH) and made available at the Kaggle platform. The main objective of this chapter is to present results from applying two state-of-the-art CNNs on a Covid-19 CT Scan images database to evaluate the possibility of differentiating images with imaging features associated with Covid-19 pneumonia from images with imaging features irrelevant to Covid-19 pneumonia. Two pre-trained neural networks, ResNet50 and MobileNet, were fine-tuned for the datasets under analysis. Both CNNs obtained promising results, with the ResNet50 network achieving a Precision of 0.97, a Recall of 0.96, an F1-score of 0.96, and 39 false negatives. The MobileNet classifier obtained a Precision of 0.94, a Recall of 0.94, an F1-score of 0.94, and a total of 20 false negatives.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(31)
- Alexandre Lobo (31)
- Emil Marques (1)
- Ivan Arraut (1)
- Jenny Phillips (1)
- Sergio Gomes (1)
Resource type
- Book (2)
- Book Section (14)
- Conference Paper (10)
- Journal Article (5)
- Thesis (1)
United Nations SDGs
Publication year
- Between 2000 and 2024 (32)