Your search
Results 121 resources
-
As the rate of change increases exponentially, organizations must adapt quickly to the business landscape's volatility, uncertainty, complexity, and ambiguity (VUCA). As a result, organizations must implement agile strategies and practices to ensure their responsiveness and readiness to any changes brought about by internal or external factors. With a greater number of changes, change agents are tasked with implementing various change management methodologies to ensure that change recipients accept change initiatives. This research will look at one of the methodologies used by change agents, the use of nudges from Thaler and Sunstein's Nudge Theory, which is a subtle intervention to influence an individual's decision-making with the goal of steering them towards a specific desired outcome; and analyze their effectiveness towards the change recipients when implemented. Change agents were interviewed on the application of Nudge Theory to change recipients when managing to change initiatives within their respective organizations. The results indicate that the use of nudges created by the change agents can significantly impact the level of resistance from the change recipients. If used correctly, the Nudge Theory can mitigate change resistance, and the success of a change initiative is higher. But, if change recipients are forced to comply, their resistance will be greater, affecting the organization overall.
-
The spontaneous symmetry breaking phenomena applied to Quantum Finance considers that the martingale state in the stock market corresponds to a ground (vacuum) state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena completely ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock markets.
-
The use of learning analytics (LA) in real-world educational applications is growing very fast as academic institutions realize the positive potential that is possible if LA is integrated in decision making. Education in schools on public health need to evolve in response to the new knowledge and th...
-
The potential of blockchain technology extends beyond cryptocurrencies and has the power to transform various sectors, including accounting and auditing. Its integration into auditing practices presents opportunities and challenges, and auditors must navigate new standards and engage with clients effectively. Blockchain technology provides tamper-proof record-keeping and fraud prevention, enhancing efficiency, transparency, and security in domains such as finance, insurance, healthcare, education, e-voting, and supply chain management. This paper conducts a bibliometric analysis of blockchain technology literature to gain insights into the current state and future directions of blockchain technology in auditing. The study identifies significant research themes and trends using keyword and citation analysis. The Vosviewer software was used to analyze the data and visualize the results. Findings reveal significant growth in blockchain research, particularly from 2021 onwards, with China emerging as a leading contributor, followed by the USA, India, and the UK. This study provides valuable insights into current trends, key contributors, and global patterns in blockchain technology research within auditing practices, and future research may explore thematic areas in greater depth.
-
With the rapid development of digital media, internet celebrity live streaming has become a key factor in influencing the consumer decision-making of adolescents, presenting unique regional characteristics in different socio-cultural and economic contexts. This study investigates the differences in consumption habits among adolescents in Macau and Mainland China and their impact on the innovation and reform of the commercial model of internet celebrity live streaming. The methodology employs a questionnaire survey and data analysis to systematically compare the consumption behavior of adolescents in Macao and mainland China, collecting live streaming consumption habits of adolescents in both regions. Statistical methods are used to compare and analyze the consumption patterns within the regions. The analysis indicates that influencers, as internet celebrities with a large number of fans on social media, have a significant impact on adolescents' consumption decisions through their recommendations and evaluations. Firstly, the convenience and diversity of e-commerce platforms provide adolescents with a wealth of consumption choices, such as characteristics and usage effects of products. Secondly, the recommendations and evaluations of influencers have become an important reference for adolescents' consumption. Results show that adolescents in Macau tend to seek entertainment and interaction in their consumption of internet celebrity live streaming, whereas those in Mainland China place greater emphasis on the practicality of the live streaming content and the cost-effectiveness of the products. Moreover, the study reveals the roles of socio-cultural and economic levels in the differences in consumption between the two regions. Based on these insights, it is recommended that live streaming platforms should advance the innovation and reform of their business models to cater to different market characteristics—such as optimizing content recommendation algorithms, enhancing interactive elements, and improving the integration of e-commerce features, thereby promoting business sustainability and economic benefits
-
Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.
-
Human emotions can be meticulously associated with decision-making, and emotion can generate behaviours. Due to the fact that it could be bias and exhaustively complex to examine how human beings make choices, important groups of study in finance are stock traders and non-traders. The objective of this work is to analyze the connection between emotions and the decision-making process of investors and non-investors to understand how emotional arousal might dictate the process of deciding policy. As facial expressions are fleeting, neuroscience tools such as AFFDEX (Real-Time Facial Expression Analysis), Eye-Tracking, and GSR (galvanic skin response) were adopted to facilitate the experiment and its accompanying analysis process. Thirty-seven participants attended the study, ranging from 18 to 72 years old; the distribution of investors and non-investors was twenty-four and thirteen, respectively. The experiment initially disclosed a thought-provoking result between the two groups under the certainty and risk-seeking prospect theory; there were more risk-takers among non-investors at 75%, while investors were inclined toward certainty at 79.17%. The implication could be that the non-investing individuals were less complex in thought and therefore pursued higher returns besides a high probability of losing the game. In addition, the automatic emotion classification system indicates that when non-investors confronted a stock trending chart beyond their acquaintance or knowledge, they were psychologically exposed to fear, anger, sadness, and surprise. Investors, on the contrary, were detected with disgust, joy, contempt, engagement, sadness, and surprise, where sadness and surprise overlapped in both parties. Under time pressure conditions, 54.05% of investors or non-investors tend to make decisions after the peak(s) of emotional arousal. Variations were found in the deciding points of the slopes: 2.70% were decided right after the peak(s), 37.84% waited until the emotions turned stable, and 13.51% were determined as the emotional indicators started to slide downwards. Several combinations of emotional responses were associated with decisions. For example, negative emotions could induce passive decision-making, in this case, to sell the stock; nevertheless, it was also examined that as the slope slipped downwards to a particular horizontal point, the individuals became more optimistic and selected the "BUY" option. The support of physiological monitoring tools makes it possible to capture the individuals' responses and discover the science of decision-making. Future works may consider expanding the study to more significant demographic populations for further discoveries
-
Projects are tactical and operational initiatives, and achieving specific outcomes through projects can help organizations achieve strategic goals. The effective use of project management tools and techniques is essential to achieve successful results, since the goal is to maximize the realization of the project's plan by effectively using the budget, time, and resources provided by the project owner to achieve the project's original purpose. The Project Management Maturity Model (PMMM) is a tool for measuring project management capabilities and is essential to improve project and portfolio performance in different industries. The main objective of this research is to analyze and characterize the maturity level and capacity of the IT industry in Macau and HengQin based on the assessment of the PMMM. The research also aims to assess and compare the maturity level in the IT industry in Macau and HengQin. An online survey was conducted and sent to IT project managers from Macau and HenqQin. A total of 34 responses were collected, divided into 3 different parts: Part I - General Information, Part II - Project Management Areas, and Part III - Perception. The results indicate that, in general, Project Managers state that their companies do not follow Project Management standards and best practices, classifying as Low and Very Low essential PM areas such as Planning and Scheduling (68%), Scope (61%) and Communications (64%). From a comparison perspective, project managers in Macau follow less formal frameworks than Hengqin in managing the triple constraints of the project. The collected data also indicate that Macau's communication management and stakeholder engagement are less mature than Hengqin's. Furthermore, the data indicate that maturity level is not necessarily related to education level, which means not higher education has a higher maturity level. Recommendations are provided for the IT industry in both areas, and specific comments are provided for each group or professionals. In conclusion, this work allows a novel characterization and a better understanding of the Project Management adoption and maturity level of the IT Industry in Macau and Hengqin
-
Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This paper presents an empirical study that evaluates four existing deep learning models—VGG16, DenseNet, ResNet50, and GoogLeNet—utilizing the Facial Expression Recognition 2013 (FER2013) dataset. The dataset contains seven distinct emotional expressions: angry, disgust, fear, happy, neutral, sad, and surprise. Each model underwent rigorous assessment based on metrics including test accuracy, training duration, and weight file size to test their effectiveness in FER tasks. ResNet50 emerged as the top performer with a test accuracy of 69.46%, leveraging its residual learning architecture to effectively address challenges inherent in training deep neural networks. Conversely, GoogLeNet exhibited the lowest test accuracy among the models, suggesting potential architectural constraints in FER applications. VGG16, while competitive in accuracy, demonstrated lengthier training times and a larger weight file size (512MB), highlighting the inherent balance between model complexity and computational efficiency.
-
In the wave of digital transformation, Chinese banks have prioritized digital banking services as key strategic goals, aiming to revolutionize the mobile banking experience. This study aims to assess the factors influencing the willingness to use the various financial and contextual services offered through digital banking. Specifically, it is proposed a model based on users' perceptions of mobile banking scenarios and examines how the development of digital banking services influences users' willingness to use them. The study involved qualitative in-depth interviews with 12 mobile banking users, with the interview content analyzed using Nvivo qualitative analysis software. The data analysis identified 9 core coding categories: Financial Professionalism, Security, Marketing Stimulation, Innovative Products, Use Experience, Strong Relationship, Trust, Perceived Usefulness, and Willingness to Use. These categories were further refined to construct a theoretical model of user willingness in digital banking services, drawing from the optimized Technology Acceptance Model (TAM). The findings provide valuable insights for the banking industry in Macau, aiding in understanding customer needs and supporting the positive development of mobile finance and contextual digital banking services in the region.
-
Construction projects are complex endeavours, with potential obstacles that can cause delays which can have particularly profound implications potentially impacting on company's financial health, business continuity and reputation. It is becoming increasingly recognised that delays are context-specific and multifaceted, requiring more industry-oriented perceptions. This work proposes the exploratory use of Machine Learning based on Classification and Regression Trees (CART) Decision Trees (DT) to assess the predictive analysis of these approaches, considering surveys (primary data) collected from 100 specialists with different backgrounds and experiences in the construction industry. Survey responses are discussed, followed by the CART DTs, which are used as predictor for clarifying underneath relationship among different variables in a project environment. The major issue presented is related to Project Design, with "The firm is not allowed to apply for an extension of contract period", with two possible predictors, firstly, as the main factor it is found "Mistakes, inconsistencies, and ambiguities in specification and drawing", while other aspect highlights "Poor site supervision and management by the contractor". The results indicate that the correct use of Artificial Intelligence techniques with relevant data are potential tools to support the analysis of scenarios and avoidance of project delays in Project Management.
-
China growing awareness of sustainability has brought out relevant aspects to move towards a green environment. Since its subscription in 2016, China has been committed to implementing the Paris Agreement, and the Greater Bay Area (GBA) development plan prioritizes ecology and pursuing green development. The primary purpose of this research is to perceive the companies' insights concerning the implementation of sustainable buildings’ projects in Macau. For this multi-case study analysis, primary data was gathered from interviews with two groups involved in the construction projects’ lifecycle: Consultants and Contractors, to analyze different perceptions and concerns. The interviews considered two different themes about the main topic: (1) Perception on Companies’ Experience in Sustainable Projects; (2) Key Drivers towards Sustainable Buildings’ Projects’ Implementation. In conclusion, according to the analyzed data, it is essential to notice that companies’ background and the market particularities affect their corporate performance specially connected to the green construction frameworks. The data also indicate that it is necessary to move towards regulations and policies to change corporate and people's mindset.
-
In recent years, the integration of Machine Learning (ML) techniques in the field of healthcare and public health has emerged as a powerful tool for improving decision-making processes [...]
-
Artificial intelligence (AI) and deep learning (DL) are advancing in stock market prediction, attracting the attention of researchers in computer science and finance. This bibliometric review analyzes 525 articles published from 1991 to 2024 in Scopus-indexed journals, utilizing VOSviewer software to identify key research trends, influential contributors, and burgeoning themes. The bibliometric analysis encompasses a performance analysis of the most prominent scientific contributors and a network analysis of scientific mapping, which includes co-authorship, co-occurrence, citation, bibliographical coupling, and co-citation analyses enabled by the VOSviewer software. Among the 693 countries, significant hubs of knowledge production include China, the US, India, and the UK, highlighting the global relevance of the field. Various AI and DL technologies are increasingly employed in stock price predictions, with artificial neural networks (ANN) and other methods such as long short-term memory (LSTM), Random Forest, Sentiment Analysis, Support Vector Machine/Regression (SVM/SVR), among the 1399 keyword counts in publications. Influential studies such as LeBaron (1999) and Moghaddam (2016) have shaped foundational research in 8159 citations. This review offers original insights into the bibliometric landscape of AI and DL applications in finance by mapping global knowledge production and identifying critical AI methods advancing stock market prediction. It enables finance professionals to learn about technological developments and trends to enhance decision-making and gain market advantage.
-
The gold standard to detect SARS-CoV-2 infection considers testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. In parallel, X-Ray and CT scans play an important role in the diagnosis and treatment processes. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are typical characteristics of pneumonia caused by COVID-19. This chapter presents an AI-based system using multiple Transfer Learning models for COVID-19 classification using Chest X-Rays. In our experimental design, all the classifiers demonstrated satisfactory accuracy, precision, recall, and specificity performance. On the one hand, the Mobilenet architecture outperformed the other CNNs, achieving excellent results for the evaluated metrics. On the other hand, Squeezenet presented a regular result in terms of recall. In medical diagnosis, false negatives can be particularly harmful because a false negative can lead to patients being incorrectly diagnosed as healthy. These results suggest that our Deep Learning classifiers can accurately classify X-ray exams as normal or indicative of COVID-19 with high confidence.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(100)
- Alexandre Lobo (100)
- Douty Diakite (1)
- Emil Marques (1)
- Ivan Arraut (3)
- Jenny Phillips (1)
- Sergio Gomes (2)
- Silva, Susana C. (1)
-
Institute for Data Engineering and Sciences
(2)
- George Du Wencai (2)
Resource type
- Book (3)
- Book Section (33)
- Conference Paper (17)
- Journal Article (41)
- Preprint (2)
- Presentation (6)
- Thesis (19)
United Nations SDGs
Student Research and Output
Publication year
- Between 2000 and 2025 (120)
- Unknown (1)