Your search
Results 107 resources
-
The area of clinical decision support systems (CDSS) is facing a boost in research and development with the increasing amount of data in clinical analysis together with new tools to support patient care. This creates a vibrant and challenging environment for the medical and technical staff. This chapter presents a discussion about the challenges and trends of CDSS considering big data and patient-centered constraints. Two case studies are presented in detail. The first presents the development of a big data and AI classification system for maternal and fetal ambulatory monitoring, composed by different solutions such as the implementation of an Internet of Things sensors and devices network, a fuzzy inference system for emergency alarms, a feature extraction model based on signal processing of the fetal and maternal data, and finally a deep learning classifier with six convolutional layers achieving an F1-score of 0.89 for the case of both maternal and fetal as harmful. The system was designed to support maternal–fetal ambulatory premises in developing countries, where the demand is extremely high and the number of medical specialists is very low. The second case study considered two artificial intelligence approaches to providing efficient prediction of infections for clinical decision support during the COVID-19 pandemic in Brazil. First, LSTM recurrent neural networks were considered with the model achieving R2=0.93 and MAE=40,604.4 in average, while the best, R2=0.9939, was achieved for the time series 3. Second, an open-source framework called H2O AutoML was considered with the “stacked ensemble” approach and presented the best performance followed by XGBoost. Brazil has been one of the most challenging environments during the pandemic and where efficient predictions may be the difference in saving lives. The presentation of such different approaches (ambulatory monitoring and epidemiology data) is important to illustrate the large spectrum of AI tools to support clinical decision-making.
-
Objective: This study highlights the potential of an Electrocardiogram (ECG) as a powerful tool for early diagnosis of COVID-19 in critically ill patients with limited access to CT–Scan rooms. Methods: In this investigation, 3 categories of patient status were considered: Low, Moderate, and Severe. For each patient, 2 different body positions have been used to collect 2 ECG signals. Then, from each collected signal, 10 non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) were extracted every 1s ECG time-series length to serve as entries for 19 Machine learning classifiers within a leave-one-out cross-validation procedure. Four different classification scenarios were tested: Low vs. Moderate, Low vs. Severe, Moderate vs. Severe and one Multi-class comparison (All vs. All). Results: The classification report results were: (1) Low vs. Moderate - 100% of Accuracy and 100% of F1–Score; (2) Low vs. Severe - Accuracy of 91.67% and an F1–Score of 94.92%; (3) Moderate vs. Severe - Accuracy of 94.12% and an F1–Score of 96.43%; and (4) All vs All - 78.57% of Accuracy and 84.75% of F1–Score. Conclusion: The results indicate that the applied methodology could be considered a good tool for distinguishing COVID-19’s different severity stages using ECG signals. Significance: The findings highlight the potential of ECG as a fast and effective tool for COVID-19 examination. In comparison to previous studies using the same database, this study shows a 7.57% improvement in diagnostic accuracy for the All vs All comparison.
-
Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.
-
Objetivo: Explorar a aplicação de inteligência artificial (IA) na predição da idade óssea a partir de imagens de raios-X. Método: Utilizou-se a Metodologia Interdisciplinar para o Desenvolvimento de Tecnologias em Saúde (MIDTS) para desenvolver uma ferramenta de predição. O treinamento foi realizado com redes neurais convolucionais (CNNs) usando um conjunto de dados de 14.036 imagens de raios-X. Resultados: A ferramenta alcançou um coeficiente de determinação (R²) de 0,94807 e um Erro Médio Absoluto (MAE) de 6,97, destacando sua precisão e potencial de aplicação clínica. Conclusão: O projeto demonstrou grande potencial para aprimorar a predição da idade óssea, com possibilidades de evolução conforme a base de dados aumenta e a IA se torna mais sofisticada.
-
The COVID-19 pandemic has posed a significant public health challenge on a global scale. It is imperative that we continue to undertake research in order to identify early markers of disease progression, enhance patient care through prompt diagnosis, identification of high-risk patients, early prevention, and efficient allocation of medical resources. In this particular study, we obtained 100 5-min electrocardiograms (ECGs) from 50 COVID-19 volunteers in two different positions, namely upright and supine, who were categorized as either moderately or critically ill. We used classification algorithms to analyze heart rate variability (HRV) metrics derived from the ECGs of the volunteers with the goal of predicting the severity of illness. Our study choose a configuration pro SVC that achieved 76% of accuracy, and 0.84 on F1 Score in predicting the severity of Covid-19 based on HRV metrics.
-
Following the World Health Organization proclaims a pandemic due to a disease that originated in China and advances rapidly across the globe, studies to predict the behavior of epidemics have become increasingly popular, mainly related to COVID-19. The critical point of these studies is to discuss the disease's behavior and the progression of the virus's natural course. However, the prediction of the actual number of infected people has proved to be a difficult task, due to a wide range of factors, such as mass testing, social isolation, underreporting of cases, among others. Therefore, the objective of this work is to understand the behavior of COVID-19 in the state of Ceará to forecast the total number of infected people and to aid in government decisions to control the outbreak of the virus and minimize social impacts and economics caused by the pandemic. So, to understand the behavior of COVID-19, this work discusses some forecast techniques using machine learning, logistic regression, filters, and epidemiologic models. Also, this work brings a new approach to the problem, bringing together data from Ceará with those from China, generating a hybrid dataset, and providing promising results. Finally, this work still compares the different approaches and techniques presented, opening opportunities for future discussions on the topic. The study obtains predictions with R2 score of 0.99 to short-term predictions and 0.93 to long-term predictions.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(86)
- Alexandre Lobo (86)
- Douty Diakite (1)
- Emil Marques (1)
- Ivan Arraut (3)
- Sergio Gomes (2)
- Silva, Susana C. (1)
-
Institute for Data Engineering and Sciences
(2)
- George Du Wencai (2)
Resource type
- Book (3)
- Book Section (31)
- Conference Paper (14)
- Journal Article (38)
- Preprint (2)
- Thesis (19)
United Nations SDGs
Student Research and Output
Publication year
- Between 2000 and 2025 (107)