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Abstract: Air pollution in Macau has become a serious problem following the Pearl River Delta’s
(PRD) rapid industrialization that began in the 1990s. With this in mind, Macau needs an air quality
forecast system that accurately predicts pollutant concentration during the occurrence of pollution
episodes to warn the public ahead of time. Five different state-of-the-art machine learning (ML)
algorithms were applied to create predictive models to forecast PM2.5, PM10, and CO concentrations
for the next 24 and 48 h, which included artificial neural networks (ANN), random forest (RF),
extreme gradient boosting (XGBoost), support vector machine (SVM), and multiple linear regression
(MLR), to determine the best ML algorithms for the respective pollutants and time scale. The diurnal
measurements of air quality data in Macau from 2016 to 2021 were obtained for this work. The
2020 and 2021 datasets were used for model testing, while the four-year data before 2020 and 2021
were used to build and train the ML models. Results show that the ANN, RF, XGBoost, SVM, and
MLR models were able to provide good performance in building up a 24-h forecast with a higher
coefficient of determination (R2) and lower root mean square error (RMSE), mean absolute error
(MAE), and biases (BIAS). Meanwhile, all the ML models in the 48-h forecasting performance were
satisfactory enough to be accepted as a two-day continuous forecast even if the R2 value was lower
than the 24-h forecast. The 48-h forecasting model could be further improved by proper feature
selection based on the 24-h dataset, using the Shapley Additive Explanations (SHAP) value test and
the adjusted R2 value of the 48-h forecasting model. In conclusion, the above five ML algorithms
were able to successfully forecast the 24 and 48 h of pollutant concentration in Macau, with the RF
and SVM models performing the best in the prediction of PM2.5 and PM10, and CO in both 24 and
48-h forecasts.

Keywords: air pollution; air quality; air quality forecast; machine learning; Macau

1. Introduction

The concentration of air pollutants is significantly influenced by different meteorologi-
cal variables. These include atmospheric pressure, temperature, humidity, solar radiation,
wind direction, and wind speed, which are factors for the movement of gases and aerosols
to different heights, latitudes, and longitudes within a certain distance. In addition, the
local air quality in Macau is also affected by the seasonal north and south monsoon, which
brings transboundary pollutants from industrialized areas within the PRD. In Macau, local
sources of emissions are from combustion activities, which include the burning of fossil
fuels, industrial combustion, and waste incineration, as well as construction-related activi-
ties. Studies using statistical and ML methods have been carried out previously in Macau
with promising results [1,2]. Vehicle emissions are a major source of the primary pollutants
PM, CO, NO2, and SO2 [3]. The construction of infrastructure in Macau is also a significant
source of PM2.5 and PM10 [4].

In winter, the northern monsoon brings transboundary pollutants such as PM2.5, and
gases (SO2, NO2, and CO) from neighboring cities, which bring thick smog, reducing
visibility and affecting human health [5,6]. The southwest monsoon brings frequent and
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sometimes heavy rainfall. It can effectively stop the spread of air pollutants from the north
due to the change in wind direction and the amount of rainfall. Spring and autumn are
relatively short transition periods [7]. The health impacts of air pollution were identified
by several studies carried out by the WHO, and experts estimated that air pollution caused
around 7 to 8 million deaths per year [8].

The air pollutants that affected Macau include PM2.5, PM10, NO2, and O3, similar
to other modernized cities in Guangdong province [9]. Cardiovascular and respiratory
diseases are the common causes of death in industrial locations, with air pollution caused
by high levels of NO2, PM2.5, and PM10 concentration [10]. PM10 and PM2.5 are inhalable
due to their small size, which may enter the human respiratory system through the nasal
passages to the alveoli in the lung, and also by transfer to cellular tissues and the circulatory
system [11–13]. Studies found that low levels of CO may exacerbate diseases such as
angina and have other subtle chronic effects, while prolonged exposure (days–months)
to low concentrations of CO may have subtle effects on the brain [14,15]. Macau has a
high-density ratio of pollutant emission sources per km2 and also suffers from the effects
of the long-range transport of PM2.5 to Macau by the northern monsoon [16,17].

Chemical transport models (CTM) are commonly used methods to forecast air quality
accurately, but it usually takes a huge amount of calculation time and with large uncertain-
ties [18]. ML models are one way to predict air quality in a fast and accurate way. Studies
showed that the ANN model performed much better than the MLR model in predicting
the PM10 concentration in Athens, Greece. It also outperformed MLR based on the same
input parameters, along with a selection of algorithms to predict NO2 concentrations, in
Auckland, New Zealand. Moreover, it performed well in the prediction of six air pollutants,
including O3, NO2, PM10, PM2.5, SO2, and CO, and the AQI, in Ahvaz, Iran [19–21]. Other
studies found that the LSTM model performed the best amongst MLR and ANN models
and was able to predict high levels of PM2.5 concentration in Melbourne, Australia [22].
Also, SVM, with Pearson VII Universal Kernel (PUK), gave the highest R2 in the prediction
of six air pollutants, and with the Radial Basis Function (RBF) Kernel, successfully predicted
the AQI in New Delhi, India [23,24]. The RF model performed the best among DTR and
ANN models in the prediction of AQI levels in Shenyang, China and performed well in the
prediction of AQI in Beijing, China [25,26]. In addition, the XGBoost model outperformed
RF, SVM, MLR, and DTR models, with high accuracy and low over-fitting probability, in the
prediction of PM2.5 concentration in Tianjin, China [27]. Additionally, the use of CART and
MLR has successfully predicted NO2, PM2.5, PM10, and O3 concentrations in Portugal and
Macau, and RF performed the best amongst GB, SVM, and MLR models in the prediction of
PM2.5 and PM10 in Macau [1,2]. Overall, these studies show that the ML methods perform
well in air quality forecasts.

Before this study, there were no forecasting models that could accurately predict 48 h
ahead of the air quality forecast in Macau. The models were developed to predict the
24 and 48-h concentrations of PM10, PM2.5, and CO for Taipa Ambient, Macau. This paper
aims to determine the best ML methods, including ANN, RF, XGBoost, SVM, and MLR
models to forecast air quality in Macau during air pollution episodes. It is expected that
these ML algorithms are capable of performing air quality forecasts. This study may be
used as a reference for neighboring cities and regions with similar geographical settings as
Macau.

2. Materials and Methods
2.1. Data Acquisition

The work collected daily measurements of air quality data and meteorological pa-
rameters from the Macau Meteorological and Geophysical Bureau (SMG) and the Hong
Kong Observatory (HKO) from 2016 to 2021 to build and train the ML models, using the
features which are shown in Table 1 and are split into two categories. The first category
is the time series data of air pollutant concentrations, including PM2.5, PM10, and CO
from the previous days (D1, D2, D3) and 16D1 (from 1600 h yesterday to 1500 h today),
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because daily commutes may contribute disproportionately to overall daily exposure to
urban air pollutants such as PM and CO [28]. The second category is the meteorological
variables, subdivided into two groups—upper air observation and ground surface observa-
tion. Upper air observation variables indicate atmospheric stability versus trends and how
atmospheric conditions influence the spread of pollutants within a certain area. The upper
air observation data was collected from the Hong Kong Observatory’s King’s Park Station
(45004) at 1200 h UTC every day as this is the closest World Meteorological Organization
(WMO) recognized upper air observatory to Macau. Ground surface observation indicates
trends regarding the capacity of air pollutant dispersion by wind and the deposition and
removal of air pollutants by precipitation. These air quality forecast models are developed
using the air quality variables and meteorological variables as the predictors of the study
and applied to five different ML algorithms. With these big data collected over the years,
the application of ML algorithms is possible to establish a training and testing dataset and
extract important information from them.

Table 1. Air quality forecasting variables considered as predictors for the ML models.

Data Type Source Variables Description

Air pollutant
concentration
(PM2.5, PM10, CO)

SMG, surface air quality
station
(at Taipa Ambient, Macau)
Data type: daily mean data
converted from hourly data in
past 24-h

PM_23D1, PM_23D2,
PM_23D3, PM_16D1
CO_23D1, CO_23D2,
CO_23D3, CO_16D1

Daily mean concentration for the
PM10. PM2.5 and CO for the last 3
days (23D1, 23D2, 23D3) and the
16D1 from 16:00 of yesterday to 15:00
of today in µg/m3)

Meteorological data

Upper air observation
(Upper-air Sounding System)
King’s Park Station (Number
45004)
Data collected at 1200 h UTC

H_1000, H850, H700,
H_500
TAR_925, TAR_850,
TAR_700
HR_925, HR_850, HR_700
TD_925, TD_850, TD_700
THI_850, THI_700,
THI_500
STB_925, STB_850,
STB_700

Geopotential height at pressure levels
in (m)
Air temperature at pressure levels in
(◦C)
Relative humidity at pressure levels
in (%)
Dew point at pressure levels, in (◦C)
Thickness at pressure levels
(connected to mean temperature in
the layer in (m)
Stability at pressure levels (an
indicator of atmospheric stability) in
(◦C)

SMG, surface air quality
station
(at Taipa Ambient, Macau)
Surface relative humidity
Data type: daily mean data
converted by hourly data in
past 24-h

T_AIR_MD, T_AIR_MX,
T_AIR_MN

HRMD, HRMX, HRMN

Air temperature, mean, min, max (an
indicator of air stability at surface
level) in (◦C)
Maximum, minimum and mean of
relative humidity at the surface in (%)

Other data
Geographical data and
community activities in
Macau

DD
FF

Duration of sunshine in (h)
Weekday indicator (flag): weekday =
0, weekend = 1

2.2. Procedure of Study

Figure 1 illustrates the workflow of this work, starting with the acquisition of data and
data normalization for all the ML models. Once data preprocessing was completed, ANN,
RF, XGBoost, SVM, and MLR models of the 24-h forecast were built, and hyperparameters
were specifically tuned to ensure optimum performance. SHAP analysis was applied
to analyze the 24-h forecasting model of each air pollutant, and each pollutant’s most
dominant factors were identified. For the 48-h forecast, data normalization was required to
re-identify the features’ time interval by adding 24 h. Afterwards, the data preprocessing



Sustainability 2023, 15, 5341 4 of 17

started to build the primary 48-h model. Once it was built, the feature selection was required
to enhance the model accuracy if the R2 was below 0.5 (defined threshold). The feature
selection criteria are based on SHAP values and the characteristic of each meteorological
feature. The highest adjusted R2 value determined the best feature-reduced model, and it
must also be better than the R2 of the MLR model. For the 24-h best ML model, the adjusted
R2 values were compared to analyze the influence of meteorological parameters in the ML
models and the accuracy in combination, with and without, meteorological parameters.
Lastly, the result of 24-h predictions for different years was compared and analyzed.
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2.3. Learning Algorithms

The ANN model consists of a network of neurons made of three parts: the input, the
hidden, and the output layer, and when it is of suitable configuration and sufficient data is
available, it can be used to fit any linear and non-linear functions [20].

The SVM model can accurately map, classify and fit the input data to a high dimen-
sional space through a kernel function, and after mapping through the kernel function, the
sample points can be separated by a hyperplane [29]. Mathematically, the SVM model can
be described by the equation (Equation (1)),

f (x) = µ + wTφ(x) (1)

where φ(x) is the kernel function for high-dimensional mapping of the original data.
The RF model is an integrated learning model composed of multiple decision trees,

each decision tree comprising three parts: the root, the leaf, and the internal node. The root
node stores all the datasets, the internal node is used to classify the features, and the leaf
node represents the different corresponding output results [30].

The XGBoost model is an extreme gradient boosting algorithm and a decision tree-
based ensemble learning model with the core idea to fit and learn the residuals of the
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previous tree, with the final prediction result being the sum of the effects of all regression
trees [31].

The objective function is shown by the following equation.

Obj =
n

∑
i=1

l(yi − ŷi) +
K

∑
k=1

Ω( fk) (2)

where yi is the measured value; ŷi is the predicted value of each tree; l is the loss function,

which is used to measure the total prediction error;
K
∑

k=1
Ω( fk) is the regularization term,

and is related to the structural complexity of each tree. It is added to the objective function
to prevent overfitting caused by too strong a fitting ability.

The MLR model is an improved simple linear regression (SLR) that uses more than
one independent variable to determine the linear relationship, with inputted data fitted to
a hyperplane, which is generally a straight line in a high-dimensional space [19].

The regression equation of MLR is shown as follows:

ypredict = a1x1 + a2x2 + · · ·+ anxn + b + ε (3)

where ypredict is the prediction value, xn is the nth independent variable, an is the nth weight
of xn variable, b is the intercept, and ε is the error of the regression line.

SHAP value is a technique used to determine the contribution of each variable in the
forecasting models, which was introduced in cooperative game theory, and obtained by
calculating the marginal contribution of each variable in the model [32,33].

The marginal contribution can be obtained as follows:

∅j(v) =
1
|N| ∑

S⊆N\{j}

(
|S|!(|N| − |S| − 1)!

|N|!

)−1

(v(S ∪ {j})− v(S)) (4)

where ∅j(v) is the contribution of feature j, v is the model to explain, N\{j} is the feature
set without feature j, S is the subset of N\{j}, S∪ {j} is the subset S included with feature j,
|N| is the number of total features, and |S| is the number of features in a subset.

A test on adjusted R2, calculated as follows, was also used to confirm the effectiveness
of feature selection in the reduced-feature model. It is calculated as:

Adjusted R2 = 1 − [(1 − R2) ∗ (n − 1)/(n − k − 1)] (5)

where:
R2: The R2 of the model
n: The number of observations (no. of records)
k: The number of predictor variables
Table 2 shows the model parameters and hyperparameters of the models used in this

study, which are determined based on the previous literature and studies.

2.4. Implementation and Evaluation Methods of ML Models

The ML models developed in this work are via Jupiter Lab 3.0.14, and Python language
is used to create the models. The core packages include sklearn 1.0.2, tensorflow 2.9.1,
xgboost 1.6.2, and SHAP 0.41.0. To verify the prediction accuracy of the model, four metrics
were used, including R2, RMSE, MAE, and BIAS. R2 represents the degree of model fit.
RMSE measures the variance of the residuals. MAE evaluates the absolute distance of
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the observations to the predictions. BIAS shows the overall direction of the error. The
equations are shown as follows:

R2 =

[∫ n
i=1(fi − f

)
− (oi − o)]2

[
∫ n

i=1 (fi −f)
2
] [
∫ n

i=1(oi − o)2]
(6)

RMSE =

√
1
n ∑n

i=1(fi − oi)
2 (7)

MAE =
1
n ∑n

i=1|fi − oi| (8)

BIAS =
1
n ∑n

i=1(fi − oi) (9)

where f is forecast, f is forecast average, o is observation, and o is observation average, for
each i case to the n number of cases.

Table 2. Model Parameters and Hyperparameters Used in this Study.

Name of Models Model Parameters and Hyperparameters

MLR All Features

ANN

Number of Neurons
First layer: 1024

Second layer: 2048
Third layer: 1024

Learning rate 0.00002
Epochs 100

Batch size 32
Validation_split 0.3

SVM C 0.1
RF n_estimators 80

XGBoost
Eta 0.3

max_depth 6

3. Results and Discussion

The results show the ML models demonstrated good performance in the 24 h forecast
for all air pollutants with high R2 values and low RMSE, MAE, and BIAS values in 2020.
Likewise, the 48 h forecast model was successfully developed for all air pollutants. In
general, the 48-h model was capable of performing the prediction with a lower R2 (from
0.55 to 0.66) compared to the 24-h model with R2 (from 0.88 to 0.94) for all air pollutants.
This result was expected due to the additional 24 h of prediction time. The best-performing
are the SVM and RF models. Specifically, the RF model is the one with the highest R2

value in predictions. The result is similar to a study in Turkey and Libya that showed that
the most important predictor variables of PM are its own lagged value and the decision-
making capabilities of the machine learning and deep learning models in air quality
management [34,35].

3.1. Performance of ML Models in 2020 (24 h)

The performance of the ML models, including ANN, RF, XGBoost, SVM, and MLR, is
measured by comparison of the R2 values. Table 3 shows the detailed performance of each
ML model in 2020. The best results are highlighted in bold. The RF model was found to
have the best performance in PM10 and PM2.5 prediction, with the highest values of R2 of
0.92 and 0.88, respectively. The best performance in CO prediction was the SVM model,
with the highest value R2 of 0.94 with the feature selection. The performance of RF and
SVM models is better than MLR. One variable—DD, was found with a highly negative
impact on the R2 value for all models. Without DD, the R2, RMSE, MAE, and BIAS of all
models improved significantly.
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Table 3. Overview of the RF, ANN, XGBoost, SVM and MLR models trained by the 2016–2019 dataset
and validated on the 2020 dataset.

ML Models Pollutant
Model Performance Indicator Model Build with

SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

RF

PM10 0.92 5.86 4.36 2.40
√

PM2.5 0.88 3.64 2.71 1.36
√

CO
0.92 0.06 0.04 0.01 √

With DD 0.89 0.06 0.04 −0.02

ANN

PM10 0.83 8.21 6.46 4.03
√

PM2.5 0.82 4.45 3.03 1.51
√

CO
0.87 0.07 0.05 0.02 √

With DD −0.96 0.27 0.23 −0.23

XGboost

PM10 0.89 6.65 4.49 2.88
√

PM2.5 0.83 4.42 3.51 2.41
√

CO
0.90 0.06 0.04 0.00 √

With DD 0.88 0.06 0.05 0.00

SVM

PM10 0.90 6.31 5.02 3.51
√

PM2.5 0.86 4.04 3.21 2.32
√

CO
0.94 0.05 0.03 0.00 √

With DD 0.43 0.15 0.12 0.12

MLR

PM10 0.90 6.27 5.01 3.53
√

PM2.5 0.85 4.18 3.37 2.51
√

CO
0.88 0.07 0.05 0.01 √

With DD −2.09 0.34 0.30 0.30

Figure 2 shows the prediction results and the observation values of CO using the SVM
model, PM2.5 and PM10 using the RF model in 2020, which gave the highest R2 value of
0.94, but it was difficult to forecast the high pollution episodes. The regression plot shows
that the overall trend of the predicted value fits within the observation value. The R2 value
is 0.88 for the PM2.5 forecasting model, which is a very promising result in this work. The
high pollution episodes could be well predicted. It shows that many predicted values are
higher than the observation value. The RF model shows the best result of R2 being 0.92 for
PM10, with the prediction value slightly higher than the observation value, which shows
that the trend of PM10 was well predicted by the RF.

Figure 3 shows the SHAP values of the variables for the SVM model for CO prediction
and the RF model for PM2.5 and PM10 prediction in 2020. It indicates that the CO concentra-
tion of 16D1 is a significant feature that influences the prediction result, and its importance
is 0.55. There is a positive relationship between the CO concentration of 16D1 and the
predicted CO concentration. In addition, the T_AIR_MX (ground level max temperature),
the WDIR (wind direction); the TD_850 and the H_850 (the dew point and geopotential
at 850hPa in upper air) are other features which contribute to the forecast model. The
dominant feature is PM25_16D1, with its importance being 11.18 in the PM2.5 model. The
second most important feature is PM25_23D1. There is a positive relationship between the
model output and PM25_16D1. The other features which contributed to the forecast model
were DD, STB_925, VMED, WDIR, H_850, and H_700. Also, PM10_16D1 contributed the
most to the PM10 model output. The other features which contributed to the PM10 forecast
model are DD, HRMN, HRMD, TD_MD, VMED, and TAR_850.

To confirm the significance of meteorological features on the predictive ability of
the 24-h ML models, the adjusted R2 values were calculated for the models, with and
without, meteorological features. Table 4 shows the R2 and adjusted R2 values in 2020.
The reliability of the 24-h forecast model can be confirmed by the adjusted R2 value of
the feature combination (all variables included) which is higher than the model with only
pollutant concentration. The adjusted R2 value of the model with upper air observation
and surface observation can be used as an indicator to determine feature reduction.
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tions using RF for 2020.

3.2. Performance of ML Models in 2021 (24 h)

The performance of the ML models, including ANN, RF, XGBoost, SVM, and MLR,
was determined by a comparison of the R2 value. Table 5 shows the detailed performance
of each ML model in 2021. The best results are highlighted in bold. The best-performing
model for PM2.5 was the RF model with an R2 of 0.89, for PM10 it was the SVM model with
an R2 of 0.92, and for CO it was the ANN model with an R2 of 0.79. The performance of the
RF, SVM and ANN models is better than that of the MLR model. The ANN model showed
good performance in 2021 in comparison to the previous year in 2020. The SVM model
showed a significant drop in the forecast performance for CO in 2021 (R2 of 0.76) compared
to the prediction in 2020 (R2 of 0.94). The variable “DD” was found to be insignificant on
the R2 in 2021. The best model for CO prediction is the ANN model, with an R2 of 0.77 and
an adjusted R2 of 0.75 after “DD” is reduced. The adjusted R2 value without DD reduction
was 0.76.
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Figure 3. (a) SHAP values of each variable in the SVM model for CO prediction; RF model for
(b) PM2.5 and (c) PM10 prediction in 2020.

Air quality prediction for the 2021 dataset did not require feature selection, but it
was required for CO in 2020. Although CO has the lowest R2 value compared to PM10
and PM2.5, the RMSE, MAE, and BIAS values are low and reasonable. The drop in R2

value could be caused by the sudden change in the emission trend from 2019 to 2021. CO
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emissions increased in 2021 during the new normal period of the COVID-19 pandemic, but
the levels of PM2.5 and PM10 concentrations remained unaffected.

Table 4. Comparison of Adjusted R2 for all best ML models (24-h) in 2020.

PM10
24-h forecast
2020
(RF)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.890 0.889
Pollutant + Upper Air 0.910 0.904
Pollutant + near ground surface 0.906 0.901
All variables included 0.916 0.907

√

PM2.5
24-h forecast
2020
(RF)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.86 0.643
Pollutant + Upper Air 0.85 0.574
Pollutant + near ground surface 0.87 0.752
All variables included 0.88 0.767

√

CO
24-h forecast
2020
(SVM)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.647 0.643
Pollutant + Upper Air 0.602 0.574
Pollutant + near ground surface 0.764 0.752
All variables included 0.790 0.767

√

Table 5. Overview of the RF, ANN, XGBoost, and SVM models trained with the 2017–2020 dataset
and validated with the 2021 dataset.

ML Models Pollutant
Model Performance Indicator Model Build with

SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

RF
PM10 0.91 6.67 4.42 0.67

√

PM2.5 0.89 4.28 3.02 0.21
√

CO 0.67 0.10 0.08 0.07
√

ANN
PM10 0.88 7.55 5.18 1.25

√

PM2.5 0.82 3.31 2.38 0.56
√

CO 0.79 0.08 0.06 0.00
√

XGBoost
PM10 0.88 7.52 5.05 0.43

√

PM2.5 0.87 3.61 2.67 0.69
√

CO 0.65 0.11 0.08 0.07
√

SVM
PM10 0.92 6.28 4.13 0.50

√

PM2.5 0.88 3.48 2.51 0.45
√

CO 0.76 0.09 0.07 0.07
√

MLR
PM10 0.91 6.52 4.20 0.68

√

PM2.5 0.87 3.65 2.54 0.39
√

CO 0.77 0.09 0.07 0.06
√

Figure 4 shows the prediction result of CO using the ANN model, and PM2.5 and
PM10 using the RF model for 2021. It shows that the prediction value is lower than the
observation value with an R2 of 0.79, and there are a few outliers. The sudden change in
CO emissions is primarily due to the COVID-19 pandemic in 2020 and has slowly increased
by 3% in the new normal period in 2021. The predicted result of the RF model fits well with
the observation value of PM2.5. The R2 is 0.89. Most values of PM2.5 could be predicted
accurately. However, the extreme high and low pollution episodes are difficult to capture
using the RF model. It also shows the prediction results of the SVM model for PM10 in 2021.
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The SVM linear kernel works well in this task. The R2 is 0.92, with the prediction value
slightly lower than the observation value.
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Figure 4. (a) Measured and predicted CO concentrations using the ANN model; Measured and
predicted (b) PM2.5 and (c) PM10 concentrations using the RF model for 2021.

Figure 5 shows the SHAP values of each variable in different models, with CO_16D1
being the most important feature and T_AIR_MX being the second most important feature
that contributes to the prediction results. The other features with contributions to the
model are TD_850, H_850, WDIR, T_AIR_MN, DD, T_AIR_MD, and STB_700. It shows that
PM25_16D1 is the most important feature, while PM25_23D1 is the second most important
feature that contributes to the prediction results. The other features with contributions to
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the model are STB_925, STB_700, H_850, TAR_850, VMED, and TD_MD. Also, it shows
that PM10_16D1 is the most important feature, while PM10_23D1 and THI850 also show a
significant contribution to the model.
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To confirm the significance of meteorological features on the predictive ability of
the 24-h ML models, the adjusted R2 values were calculated for the models, with and
without, meteorological features. Table 6 shows the R2 and adjusted R2 values for 2021.
The reliability of the 24-h forecast model can be confirmed by the adjusted R2 value of
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the feature combination (all variables included) which is higher than the model with only
pollutant concentration. The adjusted R2 value of the model with upper air observation
and surface observation can be used as an indicator to determine feature reduction.

Table 6. Comparison of Adjusted R2 for all best ML model (24-h) in 2021.

PM10
24-h forecast
2021
(SVM)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.890 0.889
Pollutant + Upper Air 0.905 0.898
Pollutant + near ground surface 0.907 0.902
All variables included 0.916 0.907

√

PM2.5
24-h forecast
2021
(RF)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.855 0.853
Pollutant + Upper Air 0.873 0.864
Pollutant + near ground surface 0.872 0.866
All variables included 0.899 0.888

√

CO
24-h forecast
2021
(ANN)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D1, 23D1 to 23D3) 0.607 0.603
Pollutant + Upper Air 0.656 0.632
Pollutant + near ground surface 0.773 0.762
All variables included 0.787 0.764

√

3.3. Performance of ML Models (48-h)

The performance of the ML models, including ANN, RF, XGBoost, SVM, and MLR,
is determined by a comparison of the R2 values. Table 7 shows the detailed performance
of each ML model separately. The best results are highlighted in bold. The RF model was
found to have the best performance in PM10 with an R2 of 0.66, the SVM model showed the
best prediction in PM2.5 with an R2 of 0.55, and the CO with an R2 of 0.62. The performance
of 48-h forecasting for PM10, PM2.5, and CO shows a deterioration with a moderate R2 value
(from 0.55 to 0.66) in comparison to the 24-h forecast.

The 48-h model needs an assessment of the meteorological factors which significantly
influence it with the adjusted R2 test. Table 8 shows the meteorological features that
influence the accuracy of the 48-h ML models by comparing the adjusted R2 values in
combination, with and without, meteorological features with the adjusted R2 value without
feature selection.

The SVM model shows the best performance in the 48-h forecast model for the pre-
diction of CO. Figure 6 shows the measured and predicted CO using the SVM model, and
PM2.5, and PM10 using the RF model in 2020. It shows that the prediction value is often
lower than the observation value in high pollution episodes during the winter season, with
an R2 value of 0.62. The SVM model obtained an R2 value of 0.57 for PM2.5 prediction. The
performance of the SVM model was better than the other ML models. It shows that the
SVM model predicted very poorly in the high pollution episodes, with an R2 of 0.55. The
SVM model could not predict well the high and low pollution episodes. The RF model
showed the best performance in the forecasting of PM10, with an R2 value of 0.66. It also
shows that the RF model was unable to predict extremely high and low pollution episodes.
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Table 7. Comparison of the RF, ANN, XGBoost, SVM and MLR models trained by 2016–2019 data
and tested on 2020 data. (48-h forecast).

ML Models Pollutant
Model Performance Indicator 48-h Model Build with

SHAP/Feature Selection

R2 RMSE MAE BIAS Yes No

RF
PM10 0.66 11.70 8.84 3.58

√

PM2.5 0.49 7.59 5.72 2.14
√

CO 0.61 0.12 0.09 0.01
√

ANN
PM10 0.65 11.96 9.28 3.69

√

PM2.5 0.50 7.56 5.68 2.27
√

CO 0.57 0.13 0.10 0.01
√

XGBoost
PM10 0.66 11.68 8.56 3.61

√

PM2.5 0.43 8.03 5.99 1.96
√

CO 0.54 0.13 0.10 0.01
√

SVM
PM10 0.64 12.10 9.55 3.29

√

PM2.5 0.55 6.97 5.02 1.03
√

CO 0.62 0.12 0.09 0.01
√

MLR
PM10 0.61 12.57 10.18 4.77

√

PM2.5 0.53 7.33 5.64 1.93
√

CO 0.59 0.12 0.09 0.01
√

Table 8. Comparison of Adjusted R2 for all the best ML models (48-h) in 2020.

PM10
48-h forecast
2020
(RF)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D2, 23D2 to 23D4) 0.598 0.594
Model (without features
reduction) 0.496 0.441

Reduced-feature model with
meteorological feature
(nos. of variables: 10)

0.662 0.652
√

CO
48-h forecast
2020
(SVM)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D2, 23D2 to 23D4) 0.556 0.551
Model (without features
reduction) −9.463 −10.611

Reduced-feature model with
meteorological feature
(nos. of variables: 13)

0.622 0.608
√

PM2.5
48-h forecast
2020
(SVM)

Variables R2 Adjusted R2 Result
(
√

= highest adjusted R2)
Pollutant (16D2, 23D2 to 23D4) 0.528 0.523
Model (without features
reduction) 0.086 −0.014

Reduced-feature model with
meteorological feature
(nos. of variables: 10)

0.552 0.539
√

3.4. Limitation of the Study

Some of the limitations of the study were records with blank data being found over
two months (from August to October 2017) due to the AQMS malfunction caused by a
super typhoon. The blank data records may negatively impact the accuracy of the ML
models. Despite the good performance of the ML models, it may be difficult to capture
some of the very low or high pollution episodes in a special scenario, such as the outbreak
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of the COVID-19 pandemic in early 2020. The result of this study is very similar to studies
in other regions [34,35], with a high R2 and low RMSE and MAE.
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Figure 6. (a) Measured and predicted CO (48-h) concentrations using SVM for 2020; (b) PM2.5 (48 h)
concentrations using SVM for 2020; (c) PM10 (48 h) concentrations using RF for 2020.

4. Conclusions

The application of different ML methods to predict the next day 24-h concentration of
CO, PM2.5, and PM10 from 2020 to 2021, and build a reduced-feature forecast model for the
48 h forecast in the concentration CO, PM2.5 and PM10, were successful for Taipa Ambient
AQMS in the region of Macau. The results of the 24-h model demonstrated that it was
more difficult to predict the CO concentration in 2021 with the lowest R2 compared to the
PM10 and PM2.5 results. The 48-h forecast model was found to be challenging for PM2.5,
with an R2 value of 0.55. In all the ML models, the variable of pollutant concentration
(CO, PM2.5, and PM10) in 16D1, D2, and D3 played an essential role in predicting CO,
PM2.5, and PM10 with the other meteorological features in the upper air and surface ground
level. For the 48-h model, it is required to build a reduced-feature model based on 24-h
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features. Eventually, the feature selection was conducted successfully based on the SHAP
value summary and other selection criteria. The meteorological features were selected
systematically and confirmed by adjusting R2 to ensure the highest R2 value was achieved.
The meteorological features were critical in increasing the accuracy of predicting pollutant
concentration. In conclusion, all of the ML algorithms were able to successfully forecast the
24 and 48 h of pollutant concentration in Macau, with RF and SVM performing the best
in the prediction of PM2.5 and PM10, and CO in both 24 and 48-h forecasts. Nevertheless,
using more years of datasets from neighboring regions may be considered for improving
forecasting ability in future studies.
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