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Gauge symmetries and the Higgs mechanism in Quantum Finance
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By using the Hamiltonian formulation, we demonstrate that the Merton-Garman equation emerges
naturally from the Black-Scholes equation after imposing invariance (symmetry) under local (gauge)
transformations over changes in the stock price. This is the case because imposing gauge symmetry
implies the appearance of an additional field, which corresponds to the stochastic volatility. The
gauge symmetry then imposes some constraints over the free-parameters of the Merton-Garman
Hamiltonian. Finally, we analyze how the stochastic volatility gets massive dynamically via Higgs
mechanism.

I. INTRODUCTION

The dynamic of any system can be always analyzed
by using the Lagrangian formulation or the Hamiltonian
one [1–3]. Selecting one or the other formulation is a
matter of convenience. The Lagrangian formulation for
example, is the favorite one in particle physics because in
such a case, relativistic effects emerge when the particles
accelerate at velocities near to the speed of light [1]. The
Lagrangian, being an invariant under Lorentz transfor-
mations, is then the ideal mathematical object for ana-
lyzing relativistic situations. The Hamiltonian formula-
tion, on the other hand, is the favorite one when we do
not deal with relativistic effects because the Hamiltonian
itself is not a relativistic invariant [4–6]. Both formu-
lations, Lagrangian and Hamiltonian, contain the same
amount of information and they are connected to each
other through the Legendre transformation [1–3, 7]. No
matter which formulation we select, in both cases we al-
ways have a kinetic term plus a potential term. When
we want to analyze the equilibrium condition of a sys-
tem (vacuum condition) by using the Hamiltonian for-
mulation, we then ignore the kinetic terms and we then
proceed to find the extreme conditions for the potential
term. This general statement can be verified in other
research areas, including gravity [8–13], condensed mat-
ter physics [14–16], in (Quantum) finance [17, 18] as well
as in Quantum Field Theory in general [1]. In ordinary
circumstances, there is a single vacuum state or equi-
librium condition for the system. However, the system
has a set of free-parameters and for certain values taken
by these parameters, the vacuum configuration might
change in a way that it becomes degenerate (multiplic-
ity of ground states or martingale states if we consider
finance) [1, 8–22]. This means that under such condi-
tions, there are multiple equivalent (but disconnected)
ground states and the system at the end selects ran-
domly one of them. When this occurs, we say that one
of the symmetries of the system is spontaneously bro-
ken [23–27]. Spontaneous symmetry breaking is a term
used for describing symmetries satisfied by the Hamil-
tonian but violated by the ground state. Spontaneous
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symmetry breaking might involve global or local (gauge)
symmetries [28]. In both cases, gapless particles dubbed
Nambu-Goldstone bosons emerge [14–16, 23–26]. When
we deal with local (gauge) symmetries, once the system
selects its ground state among all the possibilities, then
the Nambu-Goldstone bosons are eaten up by another
field, which becomes massive in this way [29, 30]. Inside
the scenario of Quantum finance, applied to the stock
market prediction, the Hamiltonian formulation has been
developed [31]. By using this formalism, the spontaneous
symmetry breaking phenomena in Quantum Finance, has
been analyzed [17]. However, by the date, the local
(gauge) symmetries inside the stock market equations
have not been studied. Furthermore, the Higgs mech-
anism in Quantum Finance has not been analyzed yet.
In this paper, we demonstrate that the Merton-Garman
(MG) equation emerges naturally from the Black-Scholes
(BS) equation after imposing the gauge symmetry condi-
tion under changes on the prices of the stock over the BS
equation. This surprising result means that the BS equa-
tion is locally equivalent to the MG equation, although
globally different. Analogue results emerge from differ-
ent gauge theories in physics [1, 25, 29, 30, 32–36]. This
demonstrates that the connection between symmetries is
general and it can be extended to other research areas.
Finally, we analyze the Higgs mechanism in this scenario,
finding then that the stochastic volatility is the field able
to become massive dynamically.

II. THE HAMILTONIAN FORMULATION IN

THE STOCK MARKET

From previous analysis, it is known that the dynamic
behind the Black-Scholes equation as well as the Merton-
Garman one, can be analyzed through the corresponding
Hamiltonians [17, 31]. Any Hamiltonian equation has the
following functional form

Hψ(S, t) = Eψ(S, t). (1)

For the BS case, the Hamiltonian is given by the equation

ĤBS = −
σ2

2

∂2

∂x2
+

(

1

2
σ2 − r

)

∂

∂x
+ r, (2)
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where

S = ex, −∞ ≤ x ≤ ∞. (3)

Here S(t) is the price of the stock. In eq. (2), σ is the
volatility and r is the interest rate. While the interest
rate is easy to fix, the volatility is normally difficult to
estimate. In fact, different persons could estimate differ-
ent values for the volatility of the same Option under the
same conditions [37]. No matter what is the estimated
value for the volatility, the dynamic of the BS system is
determined by the relation between σ and r. The func-
tion ψ(S, t) appearing in eq. (1), corresponds to the price
of an Option. The Option could be a Put Option or a
Call Option, depending on the type of contract gener-
ated between the holder of the Option and the writer of
the same Option [37, 38]. No matter what type of con-
tract the parties agree, the Black-Scholes equation, here
expressed in its Hamiltonian form, is able to find the fair
price of an Option as a function of the stock price and the
time [37]. The significant advantage of the Hamiltonian
formulation is that even without solving the equations
explicitly, still we can understand the dynamic of the sys-
tem by analyzing the behavior of the vacuum (ground)
state, which inside this scenario, appears as the Martin-
gale state. The Martingale state in the stock market is
defined as the state annihilated by the BS Hamiltonian.
Then the Martingale conditions can be expressed as [31]

HBS |S >= 0. (4)

Here the ket |S > is identified as the Martingale state.

III. GENERAL DEFINITION OF A

MARTINGALE STATE

When the market is complete and the no-arbitrage con-
dition holds, then we can claim the existence of the mar-
tingale state. The martingale condition corresponds to a
risk-neutral measure such that the conditional probabil-
ity of the discounted value of an equity at time t 6= 0 is
just equal to its present value at t = 0 [31, 39–43]. This
can be expressed Mathematically as

E[Xn+1|x1, x2, ..., xn] = xn, (5)

as a general statement for any process. For the specific
case of the stock prices S(t), the martingale state can be
expressed as

S(0) = E
[

e−
∫

t

0
r(t′)dt′S(t)|S(0)

]

. (6)

If we define the martingale state as S = ex, and if we
take the interest rate as a constant r, then it is possible
to demonstrate that

|S >= e−(t∗−t)Ĥ |S > . (7)

This result is just equivalent to eq. (4). In ordinary
cases, the martingale state is unique. However, in the BS
equation, the possibility of having spontaneous symme-
try breaking and then a multiplicity of martingale states
has been studied before [17]. Independent on how many
ground states (equilibrium conditions) the system has,
the market equilibrium condition is reached when all the
participants in the market share the same amount of in-
formation. In these situations there is no winner nor
loser until some random fluctuations break the market
equilibrium.

IV. SPONTANEOUS SYMMETRY BREAKING

IN QUANTUM FINANCE

Spontaneous symmetry breaking was explored before
inside the scenario of Quantum Finance for the cases in-
volving some global symmetries [17]. For the Hamilto-
nian defined in eq. (2), it has been proved before that
the symmetry under changes in prices is spontaneously
broken. Then the relation

p̂|S > 6= 0, (8)

is valid. The operator p̂ maps one martingale state |S >
into another one |S′ >. This issue can be perceived better
when if we consider the formal definition of the operator
p̂ by looking on its action over some ket |S >, which is
defined as

< x|p̂|S >=
∂

∂x
C(x, t), (9)

with C(x, t) =< x|S >. The derivative operation in eq.
(9), generates a shift on the ground state, mapping then
the equilibrium condition toward another one. The bro-
ken symmetry defined in eq. (8), can be considered to
be a local symmetry. In [17], a rigorous analysis of the
cases involving local symmetries was not done. It is im-
portant to note that although different martingale states
are connected by a broken generator, they do not have
necessarily the same stock price associated to them. Still,
all the different ground states represent equilibrium con-
ditions in the market. It is evident that the operator p̂,
commutes with the BS Hamiltonian in eq. (2) and then
it represents a symmetry for the system.

A. Imposing gauge symmetries inside the

Black-Scholes Hamiltonia: The origen of the

Merton-Garman equation

We can now analyze the behavior of the BS Hamilto-
nian under local transformations involving changes of the
prices of the stock. We can take a local transformation
under the changes of prices as U = eωθ(x). Here θ(x) is a
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variable depending on x, which also depends on the price
of the stock S as the eq. (3) suggests. If the operator
U were a symmetry of the system, then it would satisfy
the condition [ĤBS , U ] = 0. However, it is possible to
demonstrate that this is not the case here after using the
Hamiltonian given in eq. (2). In fact, if we use eq. (2),
together with the definition of the local changes in price,
then we have

[ĤBS , U ] 6= 0. (10)

After some calculation, it is possible to demonstrate that
in order to get an exact symmetry under local changes of
the prices (U = eωθ(x)), then the BS Hamiltonian needs
to add certain terms inside its definition in eq. (2). Under
the action of the local transformation U = eωθ(x), the BS
Hamiltonian is changed as

ĤBS → ĤBS +
σ2ω(1 + ω)

2

(

∂θ(x)

∂x

)2

+

σ2ω

(

∂θ(x)

∂x

)

∂

∂x
+ ω

(

1

2
σ2 − r

)

∂θ(x)

∂x
. (11)

Then the BS equation does not satisfy the gauge symme-
try under changes of prices defined through the transfor-
mation U = eωθ(x). For restoring the gauge-invariance,
we have to extend the standard derivative in eq. (2), such
that it becomes a covariant derivative. Without loss of
generality, here we will define the covariant derivative as

∂

∂x
→

∂

∂x
+ p̂y. (12)

Here we interpret p̂y as the momentum associated with
the stochastic volatility. After replacing the ordinary
derivative with the covariant derivative in eq. (2), we
obtain

ĤBS → Ĥ =
σ2

2
(−p̂x − p̂y) (p̂x + p̂y)

+

(

1

2
σ2 − r

)

(p̂x + p̂y) + r. (13)

The minus sign difference in the first term appears be-
cause the momentum associated to the changes of prices,
as well as the momentum associated to the changes on
the stochastic volatility are both non-Hermitian quanti-
ties, satisfying then the conditions

p̂+x =
∂

∂x

+

= −
∂

∂x
, p̂+y =

∂

∂y

+

= −
∂

∂y
. (14)

Here the index + means Hermitian conjugate operation.
After an expansion, the equation (13) becomes

Ĥ = −
σ2

2
p̂2x +

(

1

2
σ2 − r

)

p̂x −
σ2

2
p̂2y − σ2p̂xp̂y

+

(

1

2
σ2 − r

)

p̂y + r. (15)

The gauge invariance under a general transformation of
the form U = eωθ(x,y) for the new financial Hamiltonian
defined in eq. (15) is guaranteed if the following condi-
tions are satisfied

(

∂θ

∂x

)2

=
ω

1 + ω

(

∂θ

∂y

)2

,

(

∂θ

∂x

)

p̂x =

(

∂θ

∂y

)

p̂y,

∂θ

∂x
+
∂θ

∂y
− 4

∂2θ

∂x∂y
=

2r

σ2

(

∂θ

∂x
+
∂θ

∂y

)

. (16)

These conditions are obtained after checking the invari-
ance of eq. (15). In this way the changes due to lo-
cal transformations of the new terms appearing in eq.
(15), cancel exactly the additional terms appearing in
eq. (11). Note that interestingly when σ2 = 2r, then
∂2θ
∂x∂y = 0. This condition corresponds, additionally, to

the Hermiticity condition for the BS Hamiltonian. In-
dependent of the values taken by the free-parameters of
the system, as far as we can obtain the correct function
θ(x, y), the gauge invariance of the Hamiltonian (15) is
satisfied. The Hamiltonian defined in eq. (15) is the
Merton-Garman Hamiltonian if we redefine the parame-
ters appropriately as follows

ζ2 = e−2y(α− 3

2 ),

ρζ = e−y(α− 3

2 ),

r = λe−y + µ. (17)

These expressions guarantee the equivalence of the
Hamiltonian in eq. (15) and the MG Hamiltonian [31]. It
is interesting to notice that the relations in eq. (17) give
us the conditions ρ = ±1, which are the extreme con-
ditions for the parameter ρ. In the standard analysis of
the MG equation, the parameter ρ respects the following
condition

− 1 ≤ ρ ≤ 1. (18)

Then for the BS and the MG equations to be connected
through gauge invariance under changes of the prices of
the stock market system, as far as we define the covariant
derivative as in eq. (12), then the MG parameter ρ can
only take the extreme values. In this way, the white
noises related to the time evolution of the stock price
and volatility, satisfy the following conditions

< R1(t)R1(t
′) >=< R2(t)R2(t

′) >= ± < R1(t)R2(t
′) >,
(19)

when the gauge invariance connects the BS and the MG
equations [18, 31]. Finally, we must remark the inter-
esting connection between the interest rate r and the
volatility coefficients λ and µ inside eq. (17). In this
way, when the BS and the MG equations are connected
through the local symmetry transformations, the interest
rate and the volatility are related through the parameters
λ and µ.
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V. THE HIGGS MECHANISM IN QUANTUM

FINANCE: THE DYNAMICAL ORIGIN OF THE

VOLATILITY

It is not a surprise to claim that the volatility behaves
as a massive term inside the financial Hamiltonian. The
Hamiltonian obtained in eq. (15) is the Merton-Garman
Hamiltonian as far as the conditions (17) are satisfied.
Then we can safely suggest that the vacuum condition
for the Hamiltonian in eq. (15) is given by

ĤMGe
x+y = ĤMGS(x, y, t) = 0. (20)

We can consider this as the martingale condition for the
Hamiltonian (15). In [17], it was proved that the martin-
gale condition (20) is a real vacuum condition when the
following constraint

λ+ ey
(

µ+
ζ2

2
e2y(α−1) + ρζey(α−1/2)

)

= 0, (21)

is satisfied. If we impose the constraints defined in eq.
(17), inside eq. (21), then we get

e2y + µey + λ = 0. (22)

If we solve this equation, we get

ey = −
µ

2

(

1∓

√

1−
4λ

µ

)

. (23)

This equation suggests a relation between the stochastic
volatility and the parameters λ and µ. This in addition
implies that the martingale condition (20), is well-defined
when there is a direct relation between the volatility and
the interest rate. This can be seen explicitly if we in-
troduce the last relation in eq. (17) inside eq. (22). In
such a case, we get ey = −r. This condition, then im-
plies a negative interest rate in order to have a market
equilibrium. The martingale state suggested in eq. (20)
is not the only possible definition of a martingales state.
However, it is the only definition involving the prices of
the stock as well as the stochastic volatility. No mat-
ter which martingale definition we use, we can analyze
the general equilibrium in the market when we look into
the potential term of the MG Hamiltonian defined in eq.
(15). Then we can define the potential as [17, 18]

V̂ =

(

1

2
σ2 − r

)

p̂x − σ2p̂xp̂y +

(

1

2
σ2 − r

)

p̂y + r. (24)

Here we consider the terms linear in p̂x and p̂y as poten-
tial terms. We can compare this eq. with the potential
term for the MG Hamiltonian, analyzed in [17] and re-
peated here as

V̂ (x, y) = −

(

r −
ey

2

)

p̂x −

(

λe−y + µ−
ζ2

2
e2y(α−1)

)

p̂y + r. (25)

Note that the equations (24) and (25) are the same un-
der the conditions (17). In the neighborhood of the
minimal defined by the condition (20), we can consid-
ering that < x, y|S >= S(x, y, t) = ex+y =

∑

∞

n=0(x +
y)n/n! =

∑

∞

n=0 φ
n
xφ

n
y . Additionally, we know that

∂S(x, y, t)/∂x = ∂S(x, y, t)/∂y =
∑

n(x + y)n−1/(n −
1)! = ex+y =

∑

n nφ
n−1
x φny =

∑

n nφ
n
xφ

n−1
y . Then with-

out loss of generality, limiting the series expansion to
second order, then the potential term to analyze is

< x, y|V̂ (x, y)|S >= V (S) = −2

(

r −
ey

2

)

φxφ
2
y

−2

(

λe−y + µ−
ζ2

2
e2y(α−1)

)

φ2xφy + rφ2xφ
2
y. (26)

Note that the conditions defined in eq. (17), makes the
equations (25) and (26) to be equivalent. This means
that

λe−y + µ−
ζ2

2
e2y(α−1) = r −

ey

2
, (27)

for this case. This suggests that the coefficients involving
φxφ

2
y and φ2xφy are the same under the conditions (17).

This is a consequence of the symmetric character of the
covariant derivative selected in eq. (12). If instead of the
definition (12), we have used

∂

∂x
→

∂

∂x
+ γp̂y, (28)

introducing then another parameter γ. In this way, the
conditions (17) would be modified and then the coeffi-
cients involving φxφ

2
y and φ2xφy would be different if we

introduce this new parameter. Then introduction of γ in
general modifies the possible values taken by the param-
eters of the MG Hamiltonian. Independent of the value
taken by γ in eq. (28), at the most general and fun-
damental level, the MG equation emerges from the BS
equation after imposing local symmetry under changes
of the prices over the BS equation. In this way, the ba-
sic calculations done on the previous sections are valid in
general after considering the corrections due to the pa-
rameter γ in eq. (28). However, inside this paper, we
have focused on the case γ = 1 for the sake of simplicity.

A. The dynamical origin of the volatility

In order to analyze the dynamical origin of the volatil-
ity, we have to analyze the vacuum or ground state of the
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system. In [17], the general vacuum condition suggested
a relation of the form

φyvac =

(

λe−y + µ− ζ2

2 e
2y(α−1)

r − ey

2

)

φxvac, (29)

which under the condition γ = 1 in eq. (28), or equiva-
lently, under the condition (27), gives the result φxvac =
φyvac. The result (29) is based on the general martin-
gale state definition given in eq. (20) [17]. Although
we could in principle work around the vacuum definition
given in eq. (29), the appearance of the volatility inside
the ground state definition, would make it difficult to
visualize the mechanism behind the dynamical origin of
the mass for the volatility. Then in this section, instead
of considering the martingale state as a function of price
(x) and volatility (y), we consider it as a function of the
price only. In this way, if we modify the step from eq.
(25) to eq. (26) after considering the standard definition
of martingale (without the volatility), then we get

< x|V̂ (x, y)|S >= V (S) = −2

(

r −
ey

2

)

φxφ
2
y + rφ2xφ

2
y,

which ignores the term < x|p̂y|S >= ∂S(x, t)/∂y = 0
since in this special case, we are taking S(x, t) (martin-
gale state) as a state independent of y. Eq. (30) gives us
the ordinary Martingale condition which is the same for
the BS and MG cases. The ground state in eq. (30) is
obtained from the condition ∂V/∂φx = 0, obtaining then
[17]

φvac = 1−
σ2

2r
. (30)

Then the field φx can be expanded around this ground
state as

φ(x) = φvac + φ̄(x). (31)

For understanding the effect of this field redefinition, we
need to introduce the result (31) inside eq. (30). In this
way, we get

< x|V̂ (x, y)|S >= V (S) = −2

(

r −
ey

2

)

(φvac +

φ̄(x))φ2y + r(φvac + φ̄(x))2φ2y .(32)

From this expression, we obtain some terms of the form
φvacφ

2
y which represent the dynamical origin of the mass

of the volatility field φy . More explicitly, the expression
(32) becomes

< x|V̂ (x, y)|S >= V (S) =
(

−2

(

r −
ey

2

)

+ rφvac

)

φvacφ
2
y + .... (33)

Naturally, if φvac vanishes, then the massive term cor-
responding to the volatility field vanishes. This demon-
strates that the dynamical origin of the volatility mass
emerges from the relation between the parameters σ and
r in eq. (30). Since in the MG equation σ2 = ey, then
the phenomena is even more interesting than in stan-
dard situations because it involves non-linearities. Then
the volatility field, generates its own mass dynamically
because its influence appears inside the definition of the
vacuum state φvac. Finally, since the terms in eq. (33)
correspond to the second-order terms of the expansion of
the price and volatility fields as it was done previously in
[17], then the kinetic terms in eq. (15), do not have con-
tributions to the dynamical origin of the volatility mass,
at least not at second-order. If we consider higher-order
terms in the expansion, still the same arguments used
for obtaining the result (33) work. The behavior of the
kinetic terms for the MG equation, at all orders, was
analyzed in [18].

VI. CONCLUSIONS

In this paper we have demonstrated that the
Merton-Garman equation emerges naturally from the
Black-Scholes equation when we impose local symme-
try under changes of the stock prices over the Black
Scholes equation. Additionally, we have elaborated the
formalism for understanding the dynamical origin of the
volatility mass, which is a process analogue to the Higgs
mechanism in particle physics [29].
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