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The solution to the Hardy’s paradox|

Ivan Arrautfl]
(Dated: January 24, 2023)

By using both, the weak-value formulation as well as the standard probabilistic approach, we
analyze the Hardy’s experiment introducing a complex and dimensionless parameter (¢) which elim-
inates the assumption of complete annihilation when both, the electron and the positron departing
from a common origin, cross the intersection point P. We then find that the paradox does not
exist for all the possible values taken by the parameter. The apparent paradox only appears when
€ = 1; however, even in this case we can interpret this result as a natural consequence of the fact
that the particles can cross the point P, but at different times due to a natural consequence of the

energy-time uncertainty principle.

I. INTRODUCTION

The Hardy’s paradox is a gedanken experiment de-
signed for demonstrating how different is Quantum Me-
chanics from classical approaches [I]. It is a proof of
the non-local character of Quantum Mechanics [2]. The
experiment analyzes how an electron and a positron, cre-
ated initially as a pair (common origin), evolve through
different paths. Both particles having then two possi-
ble trajectories (two possibilities for each particle) dur-
ing their evolution. Among all the possible paths, two of
them (one for each particle) intersect at a point P. In
the original derivation of Hardy, total annihilation was
assumed for the pair if both particles are able to cross
simultaneously the intersection point P.

The paradox consists precisely in the final detection of
patterns which are only possible if both particles travel
through the point P. Any final detection of patterns
is forbidden classically but they occur at the Quantum
level, challenging any common sense [IL 2].

A weak-value interpretation of the Hardy’s paradox was
subsequently done in [3] by using the single and two-
particle interpretation of the problem.

The single particle approach suggested the necessity for
the two particles to cross the intersection point P in or-
der to develop the observed patterns in the instruments.
The single particle approach does not care at what time
each particle crosses the intersection point. This means
that in principle, the particles could cross the point P at
different times. On the other hand, the two-particle ap-
proach showed an apparent contradiction with respect to
the single-particle approximation, suggesting the impos-
sibility for the two particles to cross simultaneously the
point P. Inside the two-particle approach, the results
obtained in [3] from the perspective of the weak-value
formulation, also suggested that the option for both of
the particles to select a path where they do not cross the
point P, is related to a negative weak-value occupation
number. This result was interpreted as a repulsive effect.
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Although interesting researches in the subject were done
[4H6], an explanation about the contradictory results be-
tween the single and two-particle approximation and the
possibility of having a reconciliation between both situ-
ations has not been found by the date. In this letter we
propose the relevant arguments able to conciliate the sin-
gle and the two-particle approximations proposed in [3],
as well as the apparent contradictions found inside the
probabilistic approximation.

We analyze the paradox by introducing a complex and
dimensionless parameter €, which allows the possibility
for the two particles in the pair to cross the intersection
point P without annihilation.

In particular, for the singular point € = 1, we return back
to the Hardy’s case where both particles arrive at P and
(in principle) annihilate. On the other hand, the case
€ = 0 corresponds to the one where the final desired pat-
ters DT is not detected due to the orthogonality of the
initial state and the final desired state. Finally, we ana-
lyze the cases € = 2,4 and € — oo, explaining inside the
text why they are so relevant for the analysis. In partic-
ular, € = 4 corresponds to the case where the detectors
never register a C*~ event. Interestingly, for this situ-
ation, combinations of detection in the form Ct D~ are
allowed. In the original Hardy’s argument, the possibil-
ity of detecting first the electron and after the positron in
one frame of reference F'~ and then reversing the order
of the events by detecting first the positron and after the
electron in another frame F'T, means that in the labora-
tory frame of reference, the particles detectors are sep-
arated by spacelike intervals. Hardy then assumes that
the particles really meet at the point P in all the frames
of reference. This is a valid statement, consistent with
Special Relativity. However, it is still very restrictive in
the sense that there is no guarantee that the particles
will really meet at P when they depart from their cor-
responding origins, even if they travel equal distances.
The reason for this is the intrinsic uncertainty of the
time arrivals, consistent with the uncertainty principle
AFEAt > h. If we take into account the energy-time un-
certainty relation, there is no reason for the particles to
arrive at the same point P simultaneously and instead
they might move slightly separated in the time of arrival
at P. This is true for most of the possible events con-
sistent with the observed detection patterns. This also



remarks that the particles still have some degree of un-
certainty in their location at the moment when they are
supposed to be at P. Then assuming that the particles
really meet at P for all the events is a very high restric-
tion, removed in this paper due to the introduction of
the parameter e.

II. THE HARDY’S PARADOX: FORMULATION
OF THE PROBLEM

The standard formulation of the Hardy’s analysis,
starts with the definition of an electron-positron pair
emerging from a common point as it is illustrated in the
figure (|1). There are two possible paths for each parti-
cle. Then we have a total of four possibilities. Among
all of them, only two have a common intersection point.
Hardy’s key assumption consists in the complete annihi-
lation of the pairs if they meet at the intersection point
P. The electron and the positron emerging from the ini-
tial common point are represented by the function

[ >i=|st > [s7 >. (1)

Subsequently, the electron and the positron take different
paths. Once the particles cross the beam splitters defined
as BSE in the figure , the functions for the electron
and the positron become equivalent to [I]

1
s >— — (iju* > +]o* >). (2)

V2

The effect of the second beam splitter BS3 can be sum-
marized as

1
|'U/i >— ﬁ <|Ci > +Z|di >) ,
1
[vE >— — (i]cF > +]d* >). (3)

V2

In [I], different options related on whether or not the
Beam Splitters are removed are analyzed, finding then a
contradiction for different cases. The contradiction ap-
pears when the final detection of the electron and the
positron obey some specific patterns defined as DT in the
figure . When both beam-splitters are in place, these
patterns can only occur if there is interference between
the two particles during their journey. However, such in-
terference is only possible if both of the particles are able
to cross the point P, getting then complete annihilation
in agreement with the Hardy’s assumption. Although
the paradox is valid, the formulation of Hardy is quite re-
strictive and there are some points to analyze in deeper
detail. Hardy’s assumption of relative simultaneity for
the detection at D* is correct because the interval be-
tween the detectors is spacelike. However, assuming that

the particles always meet at P for every event is incorrect
and restrictive and in disagreement with the uncertainty
principle of Quantum Mechanics.

Then in general, both particles can cross the intersection
point P and still survive the event because in most of the
cases one particle will cross first at an instant ¢y and the
other particle will cross next at an instant tg + At, with
At > h/AE. In this letter we will see how we can gener-
alize the Hardy’s arguments, solving then any apparent
paradox.

A. Improvements on the Hardy’s formulation

The first assumption which we will change with respect
to the Hardy’s case is the condition

[t > |u” >=1, (4)

which is the statement suggesting that when the electron
and the positron meet at P, they annihilate. In our case,
considering the possibility of no-annihilation at P, we
will take

lut > u” >= (1—e)|ut > |u” >, near P. (5)

Here € = |e|e’® is a complex number. The limit ¢ — 1
gives us back the Hardy’s result since the photons gen-
erated by the annihilation process are assumed not to
reproduce pair creation processes [7]. Changing into
(5), modifies the scenario such that the paradox disap-
pears. Here we will show how. The definition ex-
cludes absolute annihilation at P. A singular caseise =1
where the term |ut > |u™ > disappears from the scene
because in principle, it represents the simultaneous ar-
rival and subsequent annihilation of the electron and the
positron when they meet at P in all the frames of refer-
ence. After crossing the first Beam Splitters BS*1, the
state becomes

|sT > [s7 >= A(=(1 - )|ut > |u™ > +ijut > v~ >
+ilvT > Ju” >+t > jvT >). (6)
Here we have used eq. (2) inside eq. and we have

also used the condition (5). The normalization factor A
depends on € and it is given by

1
A= .
VA —(e+€) +]e?
If we take a frame of reference where the positron has

crossed BS2T but where the electron has not yet arrived
at BS27, then the previous state becomes

(7)

(=€ [lc" > +ild" >]|ju™ > —|c" > |u” >

Sl =

+2ilet > v > +ildt > uT >). (8)
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FIG. 1. The Hardy’s experiment as it is showed in [IJ, illus-
trating the two possible paths taken by the particles.

If the positron is detected at DT, then we project the
state on |dT >, and the state of the electron is pro-
jected to %|u_ > (depending on €). Then we can nor-

malize the event projecting the state toward |u~ >.
The we obtain

[U_] . if detection at DT, (9)

with probability

A2
Pu_d+ = Pu+d_ = 7|6‘2' (10)
If instead of F'T, we now consider the conjugate frame
F~, where the electron is detected at D~ before the
positron crosses BS2', by doing an analogous analysis,
we get

[Uﬂ , if detection at D™, (11)

with the same probability defined in eq. . For this
reason we have expressed the equality P,- 4+ = Py+4--
Note that the probability (10)), depends on € in the same
way for both cases, namely (9)) and . This only means
that due to the symmetry of the experiment, we can take
the frames F* and F'~ to have the same velocity but
moving in opposite directions. Then both results must
share the same probability. The experiments with an
outcome D*, occur with a probability

A2
Pyrg- = Z|6|2- (12)

This result can be obtained if we introduce the eq.
inside eq. @ and after projecting over the state |[dT >
|d~ > respecting the corresponding normalization factor.
Note that the probability of occurrence, depends on e.
On the other hand, the projection of the state @ over
|u™ > |u™ > gives us

utv-y, (13)

with probability

Pire = R0~ e+ )+ [P). (1)

In [T}, 2], a reality condition of the form

oruT] = [UTUTl, (15)

was defined, no matter how we normalize the result [U].
This relation is defined through the equations @,
and . This condition is not completely accurate be-
cause the left-hand side in eq. says that both, the
electron and the positron arrive simultaneously at P.
However, although the right-hand side of the same ex-
pression suggests that both, the electron and the positron
arrive at P, this portion of the equation does not spec-
ify if the arrival is simultaneous. Then eq. is not
a precise equality because it does not consider the cor-
rection due to the uncertainty on the arrival times on
the right-hand side of the expression. This uncertainty
is considered by the parameter €. Then in Hardy’s origi-
nal formulation, the paradox appears from the fact that
apparently [UTU~] = 0 during the experiments. This is
the case because the right-hand side of eq. corre-
sponds to the case where the particles cross P but not
necessarily at the same instant due to the energy-time
uncertainty principle AFEAt > h. Mathematically, we
can say that while the left-hand side of eq. is true
when € = 1, the right-hand side corresponds in general to
situations where € # 1, invalidating then the expression
in general. It is for this reason that we have to revise
the Hardy’s experiment with the parameter e included.
We could then conclude a connection between e and the
uncertainty in the arrival times at the point P.

B. Relations between probabilities and probability
invariants

At this point we can find some relations between prob-
abilities. From eqns. and , it is evident that the
following relations are valid



Py+a- = Py-g+ =2Pg+q- = 2Pj4 .~ =2P.+4-. (16)

From eq. , it is clear that P,+,- has a dependence
not only on the norm |e|, but also on the phase a, ap-
pearing if we expand explicitly the expression as

Pty = A%(1 — 2|€|cosa + |€]?). (17)

Then by only knowing the results in eqns. and (16)),
we cannot fix any trustful relation with P,+,-. In or-
der to find some useful relations between probabilities,
we have to evaluate all the other probabilities for the
different paths, by using eqns. (@ and , with the cor-
responding exchanges considering the symmetry of the
experiment in eq. (8). The relevant probabilities are

Pquv* = yty— = Lytu— = Aza
Pc'*'v‘ = Iyte- = 2A27
A? 9
Py =Py = 7(4—4|e|cosa+ le]*),

2
Py = A? (4 — 2|e|cosa + |€T> . (18)

We can know define the following invariant expressions
of probability (independent of ¢)

Pyty- + Pyty- + Pyt - + Pyty- =1,
Py+g- + Perg— + Pyre- + Pere- =1,
Puva— + Pyre— + Ppve- =1,

Pgty- + Pety- + Perp- =1, (19)

with the additional condition P,+4- = Pg+,- = 0. This
condition complements the last two equations in ,
which correspond to equations where one particle arrives
to the detector before the other one. The consistency of
eqns. can be proved with the equations @, and
other expressions that can be obtained from them and
the transformations . Other two general conditions
are

Pquv* + Pquu* = Fety- + Pqud* =
Pc+c‘ + Pc'*'d‘ + Pu+d— + Pc'*'v" (20)

The previous expressions cannot constraint the parame-
ter e. However, they mark general invariants that the
system must respect. One additional expression, this
time being able to constraint €, could be derived if we
consider the figure (2).

From this figure, we can write the following relations

Pu+u— + Pd+d— = Pu+d— + Pu—d+' (21)
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FIG. 2. The probability flow through the point P. This
picture suggests an additional constraint for the probability
quantities.

If we replace the equations , and , then we

get the following quadratic equation

le|> — 8|¢|cosa 4+ 4 = 0. (22)

If we solve this equation, then we get

1
le] = 4cosa <1 +4/1— m) . (23)

It is clear that given the restriction for |e| to be real and
positive, then the phase « is restricted to take the range
of values

>a>——. (24)

wl

m
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For the extreme cases where o = +7/3, then we get
le] = 2. On the other hand, when « = 0, we get

le] = 4+ 2V/3. (25)

This result suggests that there are two possible values for
le] when o = 0. Then we can say that the allowed values
of |¢| are

4-2V3>|e| >4+2V3. (26)

The equations and represent the allowed values
that the phase o and |e| can take respectively in each ex-
periment. Note that although the value |e¢| = 1 appears
inside the possible range of values, still this value would
correspond to the phase o = 51,3deg. Then evidently,
the value € = 1 is not allowed inside the Hardy’s arrange-
ment. Being forbidden the value ¢ = 1, then the paradox
is solved.



€ Pd+d_ Pu+u_ Pv+v_ Pc+u_ Pc+c_
0 10 1/4 4 12 1

¥ [1/12 [0 /3 [1/6 [3/4

2 (1/4  [1/4 /4 |0 1/4

1 [1/3 |[3/4 /12 [1/6 |0

cox [1/4 1 0 1/2 1/4

TABLE I. Key probability values for some key values of the
parameter €. The asterisk * is put over the values excluded by
the allowed ranges defined in eqns. (24]) and . The Hardy’s
paradox corresponds to the value ¢ = 1, which is physically
excluded. Note that when € — oo all the events cross the
intersection point P. However, this value is also physically
excluded from the allowed ranges.

C. The solution to the Hardy’s paradox:
Probabilistic approach

The following table summarizes the results obtained
from the Hardy’s experiment for the different values
taken by the parameter e. In agreement with the range
of values defined in eqns. and , the values e =0
as well as € = 1 and € = oo are not allowed, still it is
interesting to mention them. From the values obtained
in the previous table, it is clear that what is known as the
Hardy’s paradox in the literature, corresponds to the not
allowed value ¢ = 1. Note that the previous table deals
with the values of € for which some of the probability
values vanish. The remaining probability values can be
found from the relations , , and . The
range of possible values allowed for € = |e|e’®, is obtained
from the allowed values defined in eqns. and .
The allowed values emerged from the constraint defined
in eq. . The Hardy’s paradox then is solved because
we have demonstrated that the value e = 1 is excluded
from the possible values taken by the parameter in agree-
ment with the constraint defined in eq. . Evidently,
without the constraint , € = 1 would just be one
among the infinite possibilities taken by the parameter €.
Even in such a case, suggesting that ¢ is exactly would
be a huge assumption.

III. THE WEAK-VALUE EXPLANATION

In [3], an alternative explanation to the Hardy’s para-
dox was done from the perspective of the weak-value.
The weak-value is a complex number defined as [8] 9]

<O X >
Xp=—1-"= 27
< Dl > (27)

where X can be any operator defining an observable. An
interesting property of the weak-value is the fact that
even if two observables are not compatible, their weak-
values can still commute. This is the case because the
measurements related to X,, are supposed to be weak

enough in order to avoid the limitations related to the
uncertainty principle. In eq. , |t > corresponds to
an initial state (Pre-selection) and |® > corresponds to
a final state (Post-selection).

In [3], the wave-functions related to the paths cross-
ing the intersection point P, were defined as (Overlap-
ping) |O >, for the electron and the positron respec-
tively. In the same way, (Non-overlapping) |[NO >.p,
represents the wave-functions corresponding to the paths
which never cross the point P for both, the electron and
the positron respectively. These states appear after the
initial wave-function departing from the lines s™ and s~
in the figure cross the initial Beam Splitters BST.
The second Beam Splitter defines the Post-selected state
in [3]. When the initial state crosses BSi, the state of
the electron-positron pair is defined as

|p >= —(|O >, +|NO >,) (|0 > +|NO >.). (28)

e~ =

In [3], the Pre-selected state is chosen such that it ig-
nores the contribution |O >, |O >,, corresponding to
the simultaneous arrival of the electron and the positron
to the point P. Ignoring this contribution agrees with
the Hardy’s assumption suggesting that any meeting of
the electron and the positron at P is a secure annihi-
lation. Following this argument, we get the following
Pre-selected state

1

[ >= %QNO >, |0 >, +]0 >, INO >,

+|NO >, [NO >.). (29)

In the same way as we did before, we will consider later
the possibility of including a fraction of the states (1 —
€)|O >. |0 >, corresponding to the events where both,
the electron and the positron can cross the intersection
point P. The parameter € will then appear in the analysis
when we consider the two-particle cases inside the weak-
value formulation. The post-selected state in [3], is the
one corresponding to the case where there is a click for
the detectors at Dt and D~ over the figure . The
Post-selected state is then defined as

1
@ >= 5 (INO >, =0 >,) (INO > —|0 >.).  (30)

By looking at the single-particle approach, we define the
number operators for the electron and positron as

Nt =|NO >,< NO|,, NE=|0>,<0|,,
N§o =|NO >.< NO|., N§ =10 >.< O.. (31)

By introducing these definitions inside eq. , and
by taking the Pre-selected state as and the Post-
selected state as , then we can calculate the weak-
value version of the occupation numbers for the single-
particle approach as



N2ow=0. (32)

These numbers will be independent of € even after in-
cluding the possibility (1 — €)|O >, |O >. inside the
pre-selected state . The result is telling us that
for the system to obtain the final desired patterns; both
particles (the electron and the positron) must cross the
intersection point P. The result however, does not
specify at what time each particle crosses the intersection
point P. If we look at the pairs, then we have to work in-
side a two-particle formalism by defining the weak-value
occupation numbers as

N]I\)/Jg,O w NZ;[\)/O ng w? Ng,p}VO w Ng wN]e\fO w?
Ng,eow: (p)wN(e)w’ N]%é,NOw:N]}:/OwNJe\TOw(33)
By using the same pre-selected and post-selected states,

the explicit result for the weak-value version of the pair
occupation number is obtained as

\/P>e _
NNO,Ow - 1’

P> _
NO,O w 0’

N(p?’j\fO w ]‘7
NYo.Now = —1: (34)

These results will have a dependence on € after introduc-
ing this parameter in this formulation. For the moment,
we can say that the results obtained in eq. suggest
that in order to get the desired post-selected state DT,
the electron and the positron must cross the intersection
point P (results NV, o, = 1 and N5%No o = 1). How-
ever, they cannot cross P simultaneoﬁsly as the result
N6 w = 0 suggests. Indeed, the weak-value number

]\Afg”eo -+ 15 a number able to specify if the particles cross

simultaneously the point P or not. Basically, if Ng’fo w
vanishes, the number is telling us that no particle can ap-
pear at the same time at P and then survive the event.
In other words, the role of N§', , is to measure the dif-
ferences on the arrival times at P, between the electron
and the positron.

We must remark once again that the single-particle ap-
proach of the weak-value formulation cannot specify
whether or not the particles arrive at the same time (si-
multaneous) at P or at different times. All what eq.
(32) says is that the particles must cross the point P if
we want to get D* on the detectors. For this reason,
the two-particle approach formulated in eq. is very
important.

At this point we can see that from the perspective of
the weak-value approximation, the apparent paradox can
be interpreted as an apparent disagreement between the
single and the two-particle approximation related to the
events happening at P during the evolution of the pair
(electron-positron) inside the system. This apparent dis-
agreement comes out from a the standard interpretation

of the results related to the two-particles number in eq.
in the original approaches of Hardy and in [3]. In
this paper we reinterpret this results by introducing the
parameter e.

Note that there is an intriguing result connected to the
event related to the evolution of the particles through
paths not crossing P. In eq. 1) NRO NO w = —1, sug-
gests that these events are related to a negative weak-
value occupation number. In [3] this is interpreted as a
repulsive effect. This can be also interpreted as a shift of
the phases of the particles moving through the system.
This means that a negative weak-occupation number can
be expressed as NV5, v ., = —1 = €™, with a phase dif-
ference of ™ between t’hAe electron and the positron moving
through the system. N3, v ,, is interpreted in general
as a number measuring the events where the particles do
not cross the intersection point P simultaneously.

IV. IMPROVEMENTS OF THE WEAK-VALUE
APPROXIMATION: THE INCLUSION OF THE
STATES (1 —€)|0 >, |0 >.

We can introduce the parameter e inside the weak-
value formalism. The only change will appear in the pre-
selected state defined initially in eq. (29)). Note that if we
include the term |O >, |O >, ineq. (29), all the relevant
weak-values would diverge since the Pre-selected state
would be orthogonal to the Post-selected state defined
in eq. . The divergence disappears if we introduce
the parameter € in the form (1 — €)|O >, |O >., with
€ # 0 in the Pre-selected state . This variation on
the Post-selected state is equivalent to the change done
in eq. , when we analyzed the probabilities. In this
way we obtain

[ >= A(INO >, |0 >, +]|0 >, INO >,
+|NO >, INO >, +(1 — €)|O >, |0 >.)(35)

Here A is the same normalization factor used in eqns.
@ and when we analyzed the original probability
formulation. The redefinition of the Pre-selected state
does not affect the single-particle results obtained in eq.
. However, it will affect the two-particle results ob-
tained in eq. . The modifications for the two-particle
weak-value numbers are

e—ia e—ia

NIZ\)/"g,Ow_ | ‘ ’ g’,c}VOw:W’

e—ia e—ia
Noow=1=—7» Nionow=—"7 (36)

le]

where we have used € = |e|e’®. The probability for the
detection of the patterns D*, can be obtained by pro-
jecting the Post-selected state over the Pre-selected state.
We obtain in this way



€ Ngy%w Nle\f’g,Ow NS’Z;VOTU N;f’g NOw
0* |—oco 0 00 —00

1* 0 1 1 -1

2 1/2 1/2 1/2 —1/2

4 1/4 1/4 1/4 -1/4

oo* |1 0 0 0

TABLE II. Key values for the weak-value occupation number
for the electron-positron pair. They correspond to some key
values of the parameter €. The asterisk * over some of the
values means that they are excluded from the range of possible
values in agreement in eqns. and . The Hardy’s
paradox corresponds to the value ¢ = 1, which is one of the
mentioned forbidden values in the system. Note that when
€ — oo all the events cross the intersection point P and then
N§'6 o — 1. However, this is also another forbidden value.

A%l ¢

<(I) >2: )
| <@l >| L T Ad (et ) )

(37)

consistent with the result obtained in eq. . Note
that in general, P;+ ;- depends on €. If we choose e =1,
then we get Py+4- = 1/12, consistent with the results
obtained in [3]. This makes sense because for € = 1, we
return-back to the Pre-selected state , which avoids
the inclusion of the option |O >, |O >.. It can be proved
from eq. (37), that more generally P4 = 1/12 if

1
le| = o (1 - m\/ cos?a + 8> . (38)

2

Then there is a full family of parameters e for which
Py+4- = 1/12. This means that there is nothing special
about the value € = 1 after all because there are plenty
of possibilities such that we can get outputs of the exper-
iment of Hardy for which there is detection at D* and
still the particles cross the intersection point P. Finally,
it is important to remark that the following condition
over the pair of particles

p,e p,e D,e p,e —
Nyo.0wtNENow+ NOowt+ NNonow =1 (39)

is just equivalent to the equation Py+,- + Py~ +
P'u,+1)* + Pu*u* = 17 showed in eq. '

V. CONCLUSIONS

In this paper we have found a novel formulation to
analyze the Hardy’s paradox. We have found that there
are many different ways for the electron and the positron
to cross the intersection point P without annihilation.
We have introduced a complex parameter e, which in
general allows the possibility for the particles in the pair
to cross P without annihilation. The same parameter
conciliates the single and two particle approaches for
the weak-value formulation as it has been analyzed
within this paper. This conciliation, suggests that the
reality condition is wrong because it corresponds
to the equality of a quantity which suggests that the
particles arrive at the same time at P (left-hand side),
with a quantity which does not care at what time both
particles arrive (right-hand side). In fact, the inclusion
of the parameter e allows both particles to cross P
but not necessarily at the same time. The fact that
both particles not necessarily cross the point P at the
same time, is a natural consequence of the energy-time
uncertainty principle AEAt > h. Then even if the two
particles depart at the same time, with the same energy;
at the moment of measuring the arrival time at P, one
particle will register the travel interval ¢, while the other
will register ¢ = At, where At is consistent with the
uncertainty principle. Finally, we must remark that in
this paper we demonstrated that the value ¢ = 1, which
corresponds to the Hardy’s paradox value, is forbidden
due to the constraint defined in eq. (21)). This constraint
gave us all the possible values for |e| and « inside the
experiment. Those range of values can be found in eqns.

and (Z0)
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