Your search

Publication year

Results 122 resources

  • Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75–3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.

  • The Mesozoic gold deposits in the North China Craton (NCC) were hosted by the Precambrian basement and Mesozoic intrusions. Thus, most researchers consider that these gold deposits were genetically linked to the Mesozoic intrusions. However, we suggest that a metamorphic devolatilization model provides an alternative based on a combined Fe and in-situ S isotopes study on auriferous pyrites from the Baiyun gold deposit in the NCC. The Triassic Baiyun gold deposit contains the quartz vein and altered rock ores that were developed in the Paleoproterozoic metavolcanic-sedimentary rocks (the Liaohe Group). Our in-situ S isotopic analyses show that pyrites from the quartz vein ores are characterized by negative δ34S values (-10.7 ∼ -5.5‰), while those from the altered rock ores have two distinct groups of δ34S values, one being positive (+13.5 ∼ +16.2‰) and the other negative (-10.6 ∼ -3.0‰). We suggest that pyrite grains with positive δ34S values should be relicts from the host rocks, because they show comparable δ34S values with those from the host rocks schists (+3.3 ∼ +16.1‰). Thus, only the negative δ34S values of pyrites in ores (-10.7 ∼ -3.0‰) and the Fe isotopes of the quartz vein ores (δ56Fe = +0.30 ∼ +0.48‰) can represent the isotopic characteristics of ore-forming fluids at Baiyun. Our study shows that the sulfur were probably from the pyritic volcanic-sedimentary sequences of the Liaohe Group, rather than from magmas. The calculated δ56Fe values of the ore-forming fluids (-0.78 ∼ -0.37‰; pyrite-fluid isotope fractionation) could be modelled in a metamorphic devolatilization model with Fe-species (pyrite&magnetite) of the Liaohe Group as sources. Therefore, our combined S- and Fe- isotope data indicate that the metamorphic devolatilization of the Liaohe Group could account for the genesis of the Baiyun gold deposit.

Last update from database: 4/27/24, 1:27 AM (UTC)