Your search
Results 100 resources
-
In this essay we argue that, based on current scientific data, the most prudential course of future actions that an American conservative can take, is one that assumes what we call climate change alarmism. In order to establish this thesis, we first provide a basic overview of the relevant climate change science, as well as give an analysis of the alarmist and lukewarming dialectic (the two primary interpretations of the data). We then move to develop our environmental wager. Finally, following Roger Scruton, we end this work by proposing what sort of policies conservatives should endorse going further.
-
As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the toxicity of chemical compounds. However, not only are these experiments time consuming and costly, but experiments that involve animal testing are increasingly subject to ethical concerns. While traditional machine learning (ML) methods have been used in the field with some success, the limited availability of annotated toxicity data is the major hurdle for further improving model performance. Inspired by the success of semi-supervised learning (SSL) algorithms, we propose a Graph Convolution Neural Network (GCN) to predict chemical toxicity and trained the network by the Mean Teacher (MT) SSL algorithm. Using the Tox21 data, our optimal SSL-GCN models for predicting the twelve toxicological endpoints achieve an average ROC-AUC score of 0.757 in the test set, which is a 6% improvement over GCN models trained by supervised learning and conventional ML methods. Our SSL-GCN models also exhibit superior performance when compared to models constructed using the built-in DeepChem ML methods. This study demonstrates that SSL can increase the prediction power of models by learning from unannotated data. The optimal unannotated to annotated data ratio ranges between 1:1 and 4:1. This study demonstrates the success of SSL in chemical toxicity prediction; the same technique is expected to be beneficial to other chemical property prediction tasks by utilizing existing large chemical databases. Our optimal model SSL-GCN is hosted on an online server accessible through: https://app.cbbio.online/ssl-gcn/home.
-
Since the launch of the One Belt and One Road Initiative (BRI) in 2013, the internationalisation of China’s tertiary education has entered a new stage. Central to the BRI is investment and strategic planning for talent cultivation, knowledge production, and transmission. This paper explains how the BRI redirects, reinforces, and intensifies China’s strategic planning and actions for internationalising its education. It adopts a policy analysis approach and reviews three key aspects of development and shifting emphasis of internationalisation under the impact of the BRI: international education networks along the Six BRI Economic Corridors, vocational colleges as new players in international education, and promotion of the Chinese language as a new global language. The analysis captures an important moment in which international education processes are being visibly altered through China’s strategies to take the lead in economic globalisation and to compete for a central place in the world via the BRI.
-
The physiological mechanisms underlying variation in aggression in fish remain poorly understood. One possibly confounding variable is the lack of standardization in the type of stimuli used to elicit aggression. The presentation of controlled stimuli in videos, a.k.a. video playback, can provide better control of the fight components. However, this technique has produced conflicting results in animal behaviour studies and needs to be carefully validated. For this, a similar response to the video and an equivalent live stimulus needs to be demonstrated. Further, different physiological responses may be triggered by live and video stimuli and it is important to demonstrate that video images elicit appropriate physiological reactions. Here, the behavioural and endocrine response of male Siamese fighting fish Betta splendens to a matched for size conspecific fighting behind a one-way mirror, presented live or through video playback, was compared. The video playback and live stimulus elicited a strong and similar aggressive response by the focal fish, with a fight structure that started with stereotypical threat displays and progressed to overt attacks. Post-fight plasma levels of the androgen 11-ketotestosterone were elevated as compared to controls, regardless of the type of stimuli. Cortisol also increased in response to the video images, as previously described for live fights in this species. These results show that the interactive component of a fight, and its resolution, are not needed to trigger an endocrine response to aggression in this species. The study also demonstrates for the first time in a fish a robust endocrine response to video stimuli and supports the use of this technique for researching aggressive behaviour in B. splendens.
-
In this essay, we respond to Dustin Crummett’s argument that one cannot consistently appeal to body count reasoning to justify being a single-issue pro-life voter if one is also committed to the usual response to the embryo rescue case. Specifically, we argue that a modified version of BCR we call BCR* is consistent with the usual response. We then move to address concerns about the relevance of BCR* to Crummett’s original thesis.
-
This study examined 206 casino dealers in hospitality at Macau to investigate the extent of their subjective career success and work engagement. Casino dealers were work engaged, but their subjective career success was fairly low, with significant difference between them, which indicates they have cognitive dissonance about their jobs. Several personality variables (emotional suppression and work ethic), organizational variables, i.e., organizational socialization (training, understanding, coworker support, future prospects), and distributive justice, were assessed in relation to subjective career success and work engagement. Organizational socialization, work ethic, and distributive justice were positively correlated with and predictors of subjective career success and work engagement; while emotion suppression was negatively correlated with and predictor of work engagement. This study provides evidence of extending the theories of subjective career success and work engagement in Chinese society and hospitality. Also, it identifies factors that could resolve the employees’ cognitive dissonance, and implementations for management were discussed.
-
In February 2020, Macau became one of the first regions where the pandemic of coronavirus or Covid-19 affected the totality of social and economic life leading to increased anxieties over movement and distance. Although Macau has had very few actual cases of the virus – 46 in total –and no deaths from it, the Macau government rapidly instituted a lock down. The aim of this article is to reflect on how the social experience of being in lockdown can provide insights into understanding the type of experience or condition that we provisionally term ‘anxious immobility.’ Such a condition is characterized by a total disruption of everyday rhythms and specifically anxious waiting for the normalization of activity while being the subject of biosocial narratives of quarantine and socially responsible. The paper is based upon 3 months of ethnographic research conducted by two researchers based in Macau. We also reflect upon some aspects of the politics of mobilities in the light of disruptions and friction points between Hong Kong, Macau, mainland China, and the rest of the world.
-
Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2–GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1β induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.
-
There are a large number of symptom consultation texts in medical and healthcare Internet communities, and Chinese health segmentation is more complex, which leads to the low accuracy of the existing algorithms for medical text classification. The deep learning model has advantages in extracting abstract features of text effectively. However, for a large number of samples of complex text data, especially for words with ambiguous meanings in the field of Chinese medical diagnosis, the word-level neural network model is insufficient. Therefore, in order to solve the triage and precise treatment of patients, we present an improved Double Channel (DC) mechanism as a significant enhancement to Long Short-Term Memory (LSTM). In this DC mechanism, two channels are used to receive word-level and char-level embedding, respectively, at the same time. Hybrid attention is proposed to combine the current time output with the current time unit state and then using attention to calculate the weight. By calculating the probability distribution of each timestep input data weight, the weight score is obtained, and then weighted summation is performed. At last, the data input by each timestep is subjected to trade-off learning to improve the generalization ability of the model learning. Moreover, we conduct an extensive performance evaluation on two different datasets: cMedQA and Sentiment140. The experimental results show that the DC-LSTM model proposed in this paper has significantly superior accuracy and ROC compared with the basic CNN-LSTM model.
-
To solve the problem of one-sided pursuit of the shortest distance but ignoring the tourist experience in the process of tourism route planning, an improved ant colony optimization algorithm is proposed for tourism route planning. Contextual information of scenic spots significantly effect people’s choice of tourism destination, so the pheromone update strategy is combined with the contextual information such as weather and comfort degree of the scenic spot in the process of searching the global optimal route, so that the pheromone update tends to the path suitable for tourists. At the same time, in order to avoid falling into local optimization, the sub-path support degree is introduced. The experimental results show that the optimized tourism route has greatly improved the tourist experience, the route distance is shortened by 20.5% and the convergence speed is increased by 21.2% compared with the basic algorithm, which proves that the improved algorithm is notably effective.
-
Abstract With its large population and natural resources, Africa needs investors who can sustain its development. At the same time, foreign investors expect returns on their investments. In ...
-
No existing review has synthesized key questions about acculturation experiences among international migrant workers. This review aimed to explore (1) What are global migrant workers’ experiences with acculturation and acculturative stress? (2) What are acculturative stress coping strategies used by migrant workers? And (3) how effective are these strategies for migrant workers in assisting their acculturation in the host countries? Peer-reviewed and gray literature, without time limitation, were searched in six databases and included if the study: focused on acculturative stress and coping strategies; was conducted with international migrant workers; was published in English; and was empirical. Eleven studies met the inclusion criteria. Three-layered themes of acculturation process and acculturative stress were identified as: individual layer; work-related layer; and social layer. Three key coping strategies were identified: emotion-focused; problem-focused; and appraisal-focused. These coping strategies were used flexibly to increase coping effectiveness and evidence emerged that a particular type of acculturative stress might be solved more effectively by a specific coping strategy. Migrant workers faced numerous challenges in their acculturative process. Understanding this process and their coping strategies could be used in developing research and interventions to improve the well-being of migrant workers.
-
Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75–3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.
-
Convolutional neural network (CNN) model based on deep learning has excellent performance for target detection. However, the detection effect is poor when the object is circular or tubular because most of the existing object detection methods are based on the traditional rectangular box to detect and recognize objects. To solve the problem, we propose the circular representation structure and RepVGG module on the basis of CenterNet and expand the network prediction structure, thus proposing a high-precision and high-efficiency lightweight circular object detection method RebarDet. Specifically, circular tubular type objects will be optimized by replacing the traditional rectangular box with a circular box. Second, we improve the resolution of the network feature map and the upper limit of the number of objects detected in a single detect to achieve the expansion of the network prediction structure, optimized for the dense phenomenon that often occurs in circular tubular objects. Finally, the multibranch topology of RepVGG is introduced to sum the feature information extracted by different convolution modules, which improves the ability of the convolution module to extract information. We conducted extensive experiments on rebar datasets and used AB-Score as a new evaluation method to evaluate RebarDet. The experimental results show that RebarDet can achieve a detection accuracy of up to 0.8114 and a model inference speed of 6.9 fps while maintaining a moderate amount of parameters, which is superior to other mainstream object detection models and verifies the effectiveness of our proposed method. At the same time, RebarDet’s high precision detection of round tubular objects facilitates enterprise intelligent manufacturing processes.