Your search

Resource type

Results 27 resources

  • The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on linear multiple regression (MR) and classification and regression trees (CART) analysis were developed successfully, for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.78 to 0.93) for all pollutants. The models utilized meteorological and air quality variables based on 5 years of historical data, from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for validation purposes. A wide range of meteorological and air quality variables was identified, and only some were selected as significant independent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-h levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum hourly O3 levels for five air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.

  • Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic setting probably contemporaneous with the subduction of the paleo-Pacific plate beneath the Eurasia, whose paleo-suture is thought to be located in the east flank of the Central Range, Taiwan.

  • In Southeast Asia, males of the Siamese fighting fish Betta splendens have been selected across centuries for paired-staged fights. During the selection process, matched for size males fight in a small tank until the contest is resolved. Breeders discard losing batches and reproduce winner batches with the aim of increasing fight performance. We assessed the results of this long-term selection process by comparing under standard laboratory conditions male and female aggressive behaviour of one strain selected for staged fights (“fighters”) and one strain of wild-types. The aggressive response of adult fish was tested against their mirror image or a size-matched conspecific. Fighter males were more aggressive than wild-type males for all measured behaviours. Differences were not only quantitative but the pattern of fight display was also divergent. Fighter males had an overall higher swimming activity, performing frequent fast strikes in the direction of the intruder and displaying from a distance. Wild-type males were less active and exhibited aggressive displays mostly in close proximity to the stimuli. Females of the fighter strain, which are not used for fights, were also more aggressive than wild-type females. Aggressive behaviours were correlated across male and female fighter siblings, suggesting common genetic and physiological mechanisms to male and female aggression in this species. The study further shows that results were largely independent of the stimulus type, with the mirror test inducing similar and less variable responses than the live conspecific presentation. These results suggest that selection for male winners co-selected for high-frequency and metabolic demanding aggressive display in males and also enhanced female aggression, opening a wide range of testable hypothesis about the ultimate and proximate mechanisms of male and female aggression in B. splendens.

  • Vocal differentiation is widely documented in birds and mammals but has been poorly investigated in other vertebrates, including fish, which represent the oldest extant vertebrate group. Neural circuitry controlling vocal behaviour is thought to have evolved from conserved brain areas that originated in fish, making this taxon key to understanding the evolution and development of the vertebrate vocal-auditory systems. This study examines ontogenetic changes in the vocal repertoire and whether vocal differentiation parallels auditory development in the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae). This species exhibits a complex acoustic repertoire and is vocally active during early development. Vocalisations were recorded during social interactions for four size groups (fry: <2 cm; small juveniles: 2–4 cm; large juveniles: 5–7 cm; adults >25 cm, standard length). Auditory sensitivity of juveniles and adults was determined based on evoked potentials recorded from the inner ear saccule in response to pure tones of 75–945 Hz. We show an ontogenetic increment in the vocal repertoire from simple broadband-pulsed ‘grunts’ that later differentiate into four distinct vocalisations, including low-frequency amplitude-modulated ‘boatwhistles’. Whereas fry emitted mostly single grunts, large juveniles exhibited vocalisations similar to the adult vocal repertoire. Saccular sensitivity revealed a three-fold enhancement at most frequencies tested from small to large juveniles; however, large juveniles were similar in sensitivity to adults. We provide the first clear evidence of ontogenetic vocal differentiation in fish, as previously described for higher vertebrates. Our results suggest a parallel development between the vocal motor pathway and the peripheral auditory system for acoustic social communication in fish.

Last update from database: 5/6/24, 7:52 AM (UTC)