Your search
Results 7 resources
-
This paper presents an algorithm that applies metrics derived from automatic QRS detection and segmentation in electrocardiogram signals for analyzing Heart Rate Variability to study the evolution of metrics in the frequency domain of a clinical procedure. The analysis was performed on three sets of elderly people, who are categorized according to frailty phenotype. The first set was comprised of frail elderly, the second pre-frail elderly, and the third robust elderly. Investigators from many disciplines have been encouraged to contribute to the understanding of molecular and physiological changes in multiple systems that may increase the vulnerability of frail elderly. In this work, the frailty phenotype can be characterized by unintentional weight loss, as self-reported, fatigue assessed by self-report, grip strength (measured directly), physical activity level assessed by self-report and gait speed (measured). The results obtained demonstrate the existence of significant differences between Heart Rate Variability metrics for the three groups, especially considering a higher preponderance for sympathetic nervous system for the group of robust patients in response to postural maneuver.
-
The visual analysis of cardiotocographic examinations is a very subjective process. The accurate detection and segmentation of the fetal heart rate (FHR) features and their correlation with the uterine contractions in time allow a better diagnostic and the possibility of anticipation of many problems related to fetal distress. This paper presents a computerized diagnostic aid system based on digital signal processing techniques to detect and segment changes in the FHR and the uterine tone signals automatically. After a pre-processing phase, the FHR baseline detection is calculated. An auxiliary signal called detection line is proposed to support the detection and segmentation processes. Then, the Hilbert transform is used with an adaptive threshold for identifying fiducial points on the fetal and maternal signals. For an antepartum (before labor) database, the positive predictivity value (PPV) is 96.80% for the FHR decelerations, and 96.18% for the FHR accelerations. For an intrapartum (during labor) database, the PPV found was 91.31% for the uterine contractions, 94.01% for the FHR decelerations, and 100% for the FHR accelerations. For the whole set of exams, PPV and SE were both 100% for the identification of FHR DIP II and prolonged decelerations.
-
In February 2020, Macau became one of the first regions where the pandemic of coronavirus or Covid-19 affected the totality of social and economic life leading to increased anxieties over movement and distance. Although Macau has had very few actual cases of the virus – 46 in total –and no deaths from it, the Macau government rapidly instituted a lock down. The aim of this article is to reflect on how the social experience of being in lockdown can provide insights into understanding the type of experience or condition that we provisionally term ‘anxious immobility.’ Such a condition is characterized by a total disruption of everyday rhythms and specifically anxious waiting for the normalization of activity while being the subject of biosocial narratives of quarantine and socially responsible. The paper is based upon 3 months of ethnographic research conducted by two researchers based in Macau. We also reflect upon some aspects of the politics of mobilities in the light of disruptions and friction points between Hong Kong, Macau, mainland China, and the rest of the world.
-
No existing review has synthesized key questions about acculturation experiences among international migrant workers. This review aimed to explore (1) What are global migrant workers’ experiences with acculturation and acculturative stress? (2) What are acculturative stress coping strategies used by migrant workers? And (3) how effective are these strategies for migrant workers in assisting their acculturation in the host countries? Peer-reviewed and gray literature, without time limitation, were searched in six databases and included if the study: focused on acculturative stress and coping strategies; was conducted with international migrant workers; was published in English; and was empirical. Eleven studies met the inclusion criteria. Three-layered themes of acculturation process and acculturative stress were identified as: individual layer; work-related layer; and social layer. Three key coping strategies were identified: emotion-focused; problem-focused; and appraisal-focused. These coping strategies were used flexibly to increase coping effectiveness and evidence emerged that a particular type of acculturative stress might be solved more effectively by a specific coping strategy. Migrant workers faced numerous challenges in their acculturative process. Understanding this process and their coping strategies could be used in developing research and interventions to improve the well-being of migrant workers.
-
<abstract><p>About 6.5 million people are infected with Chagas disease (CD) globally, and WHO estimates that $ > million people worldwide suffer from ChHD. Sudden cardiac death (SCD) represents one of the leading causes of death worldwide and affects approximately 65% of ChHD patients at a rate of 24 per 1000 patient-years, much greater than the SCD rate in the general population. Its occurrence in the specific context of ChHD needs to be better exploited. This paper provides the first evidence supporting the use of machine learning (ML) methods within non-invasive tests: patients' clinical data and cardiac restitution metrics (CRM) features extracted from ECG-Holter recordings as an adjunct in the SCD risk assessment in ChHD. The feature selection (FS) flows evaluated 5 different groups of attributes formed from patients' clinical and physiological data to identify relevant attributes among 57 features reported by 315 patients at HUCFF-UFRJ. The FS flow with FS techniques (variance, ANOVA, and recursive feature elimination) and Naive Bayes (NB) model achieved the best classification performance with 90.63% recall (sensitivity) and 80.55% AUC. The initial feature set is reduced to a subset of 13 features (4 Classification; 1 Treatment; 1 CRM; and 7 Heart Tests). The proposed method represents an intelligent diagnostic support system that predicts the high risk of SCD in ChHD patients and highlights the clinical and CRM data that most strongly impact the final outcome.</p></abstract>
-
Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.
-
Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.