Your search
Results 128 resources
-
The gold standard to detect SARS-CoV-2 infection consider testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. On the other hand, X-Ray and CT scans play a vital role in the auxiliary diagnosis process. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are characteristics of pneumonia caused by COVID-19. But before the computerized diagnostic support system can classify a medical image, a segmentation task should usually be performed to identify relevant areas to be analyzed and reduce the risk of noise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU on unseen data. Our study divided the data into training and evaluation sets using an 80/20 train-test split method. The training set was used to train the model, and the evaluation test set was used to evaluate the performance of the trained model. The results of the evaluation showed that the model achieved a Dice Similarity Coefficient (DSC) of 95%, Cross entropy of 97%, and Mean IoU of 86%.
-
Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.
-
Environmental education (EE) has long been practiced worldwide, while Nature-based solutions (NBS) is a relatively new concept. This chapter aims to provide an overview of the EE and NBS practices in East Asia and evaluate how these two valuable applications can be used concurrently. East Asia has a well developed environmental education (EE) programs and activities, both in formal and informal education. These ranges from developing green schools and campuses to establishing policies and acts. While EE has been actively practiced for decades in the region, the adoption of NBS to address environmental and societal challenges is limited. The educational benefits and opportunities from NBS are also lacking. Although there are some projects that can be classified as NBS, like the use of wetlands for wastewater treatment, they are not clearly categorized as one. These projects are also not integrated into environmental education programs. Considering this, the region should develop innovative environmental education programs for schools, universities and communities, that integrate NBS projects. Integrating the two together will boost the effectiveness of environmental education in raising environmental awareness and changing the environmental attitude and behavior of people, which will also help address societal issues.
-
Continuous cardiac monitoring has been increasingly adopted to prevent heart diseases, especially the case of Chagas disease, a chronic condition that can degrade the heart condition, leading to sudden cardiac death. Unfortunately, a common challenge for these systems is the low-quality and high level of noise in ECG signal collection. Also, generic techniques to assess the ECG quality can discard useful information in these so-called chagasic ECG signals. To mitigate this issue, this work proposes a 1D CNN network to assess the quality of the ECG signal for chagasic patients and compare it to the state of art techniques. Segments of 10 s were extracted from 200 1-lead ECG Holter signals. Different feature extractions were considered such as morphological fiducial points, interval duration, and statistical features, aiming to classify 400 segments into four signal quality types: Acceptable ECG, Non-ECG, Wandering Baseline (WB), and AC Interference (ACI) segments. The proposed CNN architecture achieves a $$0.90 \pm 0.02$$accuracy in the multi-classification experiment and also $$0.94 \pm 0.01$$when considering only acceptable ECG against the other three classes. Also, we presented a complementary experiment showing that, after removing noisy segments, we improved morphological recognition (based on QRS wave) by 33% of the entire ECG data. The proposed noise detector may be applied as a useful tool for pre-processing chagasic ECG signals.
Explore
Academic Units
-
Faculty of Arts and Humanities
(39)
- Adérito Marcos (1)
- Carlos Caires (2)
- Denis Zuev (1)
- Filipa Simões (1)
- Filipe Afonso (1)
- Gérald Estadieu (2)
- José Simões (7)
- Nuno Soares (5)
- Olga Ng Ka Man, Sandra (1)
- Priscilla Roberts (1)
-
Faculty of Business and Law
(42)
- Alessandro Lampo (1)
- Alexandre Lobo (31)
- Angelo Rafael (1)
- Douty Diakite (1)
- Florence Lei (1)
- Ivan Arraut (2)
- Jenny Phillips (1)
-
Faculty of Health Sciences
(1)
- Maria Rita Silva (1)
-
Faculty of Religious Studies and Philosophy
(18)
- Andrew Leong (1)
- Cyril Law (1)
- Franz Gassner (3)
- Jaroslaw Duraj (3)
- Judette Gallares (2)
- Stephen Morgan (5)
- Thomas Cai (1)
-
Institute for Data Engineering and Sciences
(6)
- George Du Wencai (4)
- Liang Shengbin (2)
-
Institute of Science and Environment
(6)
- David Gonçalves (2)
- Karen Tagulao (2)
- Raquel Vasconcelos (2)
-
Macau Ricci Institute
(4)
- Jaroslaw Duraj (1)
- Stephen Rothlin (3)
-
School of Education
(14)
- Elisa Monteiro (1)
- Kiiko Ikegami (2)
- Rochelle Ge (2)
- Susannah Sun (1)