Full bibliography
Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS
Resource type
Authors/contributors
- Moreira, Irina S. (Author)
- Lebel, Alexandre (Author)
- Peng, Xianzhi (Author)
- Castro, Paula M. L. (Author)
- Gonçalves, David (Author)
Title
Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS
Abstract
The occurrence of endocrine disrupting chemicals (EDCs) is a major issue for marine and coastal environments in the proximity of urban areas. The occurrence of EDCs in the Pearl River Delta region is well documented but specific data related to Macao is unavailable. The levels of bisphenol-A (BPA), estrone (E1), 17α-estradiol (αE2), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) were measured in sediment samples collected along the coastline of Macao. BPA was found in all 45 collected samples with lower BPA concentrations associated to the presence of mangrove trees. Biodegradation assays were performed to evaluate the capacity of the microbial communities of the surveyed ecosystems to degrade BPA and its analogue BPS. Using sediments collected at a WWTP discharge point as inoculum, at a concentration of 2 mg l−1 complete removal of BPA was observed within 6 days, whereas for the same concentration BPS removal was of 95% after 10 days, which is particularly interesting since this compound is considered recalcitrant to biodegradation and likely to accumulate in the environment. Supplementation with BPA improved the degradation of bisphenol-S (BPS). Aiming at the isolation of EDCs-degrading bacteria, enrichments were established with sediments supplied with BPA, BPS, E2 and EE2, which led to the isolation of a bacterial strain, identified as Rhodoccoccus sp. ED55, able to degrade the four compounds at different extents. The isolated strain represents a valuable candidate for bioremediation of contaminated soils and waters.
Publication
Biodegradation
Volume
32
Issue
5
Pages
511-529
Date
2021-10-01
Journal Abbr
Biodegradation
Language
en
ISSN
1572-9729
Accessed
4/11/23, 1:52 PM
Library Catalog
Springer Link
Citation
Moreira, I. S., Lebel, A., Peng, X., Castro, P. M. L., & Gonçalves, D. (2021). Sediments in the mangrove areas contribute to the removal of endocrine disrupting chemicals in coastal sediments of Macau SAR, China, and harbour microbial communities capable of degrading E2, EE2, BPA and BPS. Biodegradation, 32(5), 511–529. https://doi.org/10.1007/s10532-021-09948-9
Academic Units
Link to this record