Your search
Results 5 resources
-
Small and medium-sized enterprises (SMEs) can benefit significantly from open innovation by gaining access to a broader range of resources and expertise using absorptive capacitive, and increasing their visibility and reputation. Nevertheless, multiple barriers impact their capacity to absorb new technologies or adapt to develop them. This paper aims to perform an analysis of relevant topics and trends in Open Innovation (OI) and Absorptive Capacity (AC) in SMEs based on a bibliometric review identifying relevant authors and countries, and highlighting significant research themes and trends. The defined string query is submitted to the Web of Science database, and the bibliometric analysis using VOSviewer software. The results indicate that the number of scientific publications has consistently increased during the past decade, indicating a growing interest of the scientific community, reflecting the industry interest and possibly adoption of OI, considering Absorptive. This bibliometric analysis can provide insights on the most relevant regions the research areas are under intensive development.
-
The Covid-19 pandemic evidenced the need Computer Aided Diagnostic Systems to analyze medical images, such as CT and MRI scans and X-rays, to assist specialists in disease diagnosis. CAD systems have been shown to be effective at detecting COVID-19 in chest X-ray and CT images, with some studies reporting high levels of accuracy and sensitivity. Moreover, it can also detect some diseases in patients who may not have symptoms, preventing the spread of the virus. There are some types of CAD systems, such as Machine and Deep Learning-based and Transfer learning-based. This chapter proposes a pipeline for feature extraction and classification of Covid-19 in X-ray images using transfer learning for feature extraction with VGG-16 CNN and machine learning classifiers. Five classifiers were evaluated: Accuracy, Specificity, Sensitivity, Geometric mean, and Area under the curve. The SVM Classifier presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results, achieving 33.9% and 54.07%, respectively.
-
The gold standard to detect SARS-CoV-2 infection considers testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. In parallel, X-Ray and CT scans play an important role in the diagnosis and treatment processes. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are typical characteristics of pneumonia caused by COVID-19. This chapter presents an AI-based system using multiple Transfer Learning models for COVID-19 classification using Chest X-Rays. In our experimental design, all the classifiers demonstrated satisfactory accuracy, precision, recall, and specificity performance. On the one hand, the Mobilenet architecture outperformed the other CNNs, achieving excellent results for the evaluated metrics. On the other hand, Squeezenet presented a regular result in terms of recall. In medical diagnosis, false negatives can be particularly harmful because a false negative can lead to patients being incorrectly diagnosed as healthy. These results suggest that our Deep Learning classifiers can accurately classify X-ray exams as normal or indicative of COVID-19 with high confidence.
-
The gold standard to detect SARS-CoV-2 infection consider testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. On the other hand, X-Ray and CT scans play a vital role in the auxiliary diagnosis process. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are characteristics of pneumonia caused by COVID-19. But before the computerized diagnostic support system can classify a medical image, a segmentation task should usually be performed to identify relevant areas to be analyzed and reduce the risk of noise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU on unseen data. Our study divided the data into training and evaluation sets using an 80/20 train-test split method. The training set was used to train the model, and the evaluation test set was used to evaluate the performance of the trained model. The results of the evaluation showed that the model achieved a Dice Similarity Coefficient (DSC) of 95%, Cross entropy of 97%, and Mean IoU of 86%.
-
The scientific literature indicates that pregnant women with COVID-19 are at an increased risk for developing more severe illness conditions when compared with non-pregnant women. The risk of admission to an ICU (Intensive Care Unit) and the need for mechanical ventilator support is three times higher. More significantly, statistics indicate that these patients are also at 70% increased risk of evolving to severe states or even death. In addition, other previous illnesses and age greater than 35 years old increase the risk for the mother and the fetus, including a higher number of cesarean sections, higher systolic and diastolic maternal blood pressure, increasing the risk of eclampsia, and, in some cases, preterm birth. Additionally, pregnant women have more Emotional lability/fluctuations (between positive and negative feelings) during the entire pregnancy. The emotional instability and brain fog that takes place during gestation may open vulnerability for neuropsychiatric symptoms of long COVID, which this population was not studied in depth. The present Chapter characterizes the database presented in this work with clinical and survey data collected about emotions and feelings using the Coronavirus Perinatal Experiences—Impact Survey (COPE-IS). Pregnant women with or without COVID-19 symptoms who gave birth at the Assis Chateaubriand Maternity Hospital (MEAC), a public maternity of the Federal University of Ceara, Brazil, were recruited. In total, 72 mother-infant dyads were included in the study and are considered in this exploratory analysis. The participants have undergone serological tests for SARS-CoV-2 antibody detection and a nasopharyngeal swab test for COVID-19 diagnoses by RT-PCR. A comprehensive Exploratory Data Analysis (EDA) is performed using frequency distribution analysis of multiple types of variables generated from numerical data, multiple-choice, categorized, and Likert-scale questions.
Explore
Academic Units
Resource type
- Book Section (4)
- Conference Paper (1)
United Nations SDGs
Cooperation
- Brazil (5)
Publication year
-
Between 2000 and 2024
(5)
-
Between 2020 and 2024
(5)
- 2023 (5)
-
Between 2020 and 2024
(5)