Your search
Results 30 resources
-
A combination of assessment, operational forecast, and future perspective was thoroughly explored to provide an overview of the existing air quality problems in Macao. The levels of air pollution in Macao often exceed those recommended by the World Health Organization (WHO). In order for the population to take precautionary measures and avoid further health risks during high pollution episodes, it is important to develop a reliable air quality forecast. Statistical models based on linear multiple regression (MLR) and classification and regression trees (CART) analysis were successfully developed for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. Meteorological variables were selected from an extensive list of possible variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-hour levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum hourly O3 levels for five air quality monitoring stations. The results are expected to support an operational air iv quality forecast for Macao. The work involved two phases. On a first phase, the models utilized meteorological and air quality variables based on five years of historical data, from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for validation purposes. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.78 to 0.93) for all pollutants. On a second phase, these models were used with 2019 validation data, while a new set of models based on a more extended historical data series, from 2013 to 2018, were also validated with 2019 data. There were no significant differences in the coefficients of determination (R2) and minor improvements in root mean square errors (RMSE), mean absolute errors (MAE) and biases (BIAS) between the 2013 to 2016 and the 2013 to 2018 data models. In addition, for one air quality monitoring station (Taipa Ambient), the 2013 to 2018 model was applied for two days ahead (D2) forecast and the coefficient of determination (R2) was considerably less accurate to the one day ahead (D1) forecast, but still able to provide a reliable air quality forecast for Macao. To understand if the prediction model was robust to extreme variations in v pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and a low pollution episode during 2020. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration for PM2.5 levels exceeding 55 μg/m3 and the maximum hourly concentration for O3 levels exceeding 400 μg/m3. For the low pollution episode, the 2020 period of implementation of the preventive measures for COVID-19 pandemic was selected, with a low record of daily concentration for PM2.5 levels at 2 μg/m3 and maximum hourly concentration for O3 levels at 50 μg/m3. The 2013 to 2018 model successfully predicted the high pollution episode with high coefficients of determination (0.92 for PM2.5 and 0.82 for O3). Likewise, the low pollution episode was also correctly predicted with high coefficients of determination (0.86 and 0.84 for PM2.5 and O3, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels. Machine learning methods maybe adopted to provide significant improvements in combination of multiple linear regression (MLR) and classification and regression vi tree (CART) to further improve the accuracy of the statistical forecast. The developed air pollution forecasting model may be combined with other measures to mitigate the impact of air pollution in Macao. These may include the establishment of low emission zones (LEZ), as enforced in some European cities, license plate restrictions and lottery policy, as used in some Asian, tax exemptions on electric vehicles (EVs) and exclusive corridors for public transportations. Keywords: Air pollution; Particulate Matter; Ozone; Macao; Statistical air quality forecast; Pollution episodes; Chinese national holiday; COVID-19
-
The physiological mechanisms underlying variation in aggression in fish remain poorly understood. One possibly confounding variable is the lack of standardization in the type of stimuli used to elicit aggression. The presentation of controlled stimuli in videos, a.k.a. video playback, can provide better control of the fight components. However, this technique has produced conflicting results in animal behaviour studies and needs to be carefully validated. For this, a similar response to the video and an equivalent live stimulus needs to be demonstrated. Further, different physiological responses may be triggered by live and video stimuli and it is important to demonstrate that video images elicit appropriate physiological reactions. Here, the behavioural and endocrine response of male Siamese fighting fish Betta splendens to a matched for size conspecific fighting behind a one-way mirror, presented live or through video playback, was compared. The video playback and live stimulus elicited a strong and similar aggressive response by the focal fish, with a fight structure that started with stereotypical threat displays and progressed to overt attacks. Post-fight plasma levels of the androgen 11-ketotestosterone were elevated as compared to controls, regardless of the type of stimuli. Cortisol also increased in response to the video images, as previously described for live fights in this species. These results show that the interactive component of a fight, and its resolution, are not needed to trigger an endocrine response to aggression in this species. The study also demonstrates for the first time in a fish a robust endocrine response to video stimuli and supports the use of this technique for researching aggressive behaviour in B. splendens.
-
Reproduction of the sea cucumber Apostichopus japonicus is critical for aquaculture production. Gonadal development is the basis of reproduction, and lipids, which are among the main nutrients required for gonadal development, directly affect reproduction. We investigated whether gonadal and intestinal lipid metabolism differed between male and female A. japonicus. Transcriptome analysis of the intestines of sexually mature male and female wild-caught individuals revealed differences in gene expression, with 27 and 39 genes being up-regulated in females and males, respectively. In particular, the expression of the fatty acid synthase gene was higher in males than in females. Metabolome analysis of the gonads identified 141 metabolites that were up-regulated and 175 metabolites that were down-regulated in the testes compared with the ovaries in the positive/negative mode of an LC-MS/MS analysis. A variety of polyunsaturated fatty acids were found at higher concentrations in the testes than in the ovaries. 16 s rDNA sequencing analysis showed that the composition and structure of the intestinal microbiota were similar between males and females. These results suggest that sex differences in intestinal metabolism of A. japonicus are not due to differences in the microbiota, and we speculate that gonadal metabolism may be related to intestinal morphology. This information might be useful in improving the reproductive efficiency of sea cucumbers in captivity.
Explore
Academic Units
USJ Theses and Dissertations
- Doctorate Theses (1)
- Master Dissertations (6)
Resource type
- Book Section (2)
- Conference Paper (1)
- Journal Article (17)
- Report (3)
- Thesis (7)
United Nations SDGs
Cooperation
- Portugal (1)
Publication year
- Between 2000 and 2023 (29)
- Unknown (1)