Your search

Author or contributor
  • A combination of assessment, operational forecast, and future perspective was thoroughly explored to provide an overview of the existing air quality problems in Macao. The levels of air pollution in Macao often exceed those recommended by the World Health Organization (WHO). In order for the population to take precautionary measures and avoid further health risks during high pollution episodes, it is important to develop a reliable air quality forecast. Statistical models based on linear multiple regression (MLR) and classification and regression trees (CART) analysis were successfully developed for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. Meteorological variables were selected from an extensive list of possible variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-hour levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum hourly O3 levels for five air quality monitoring stations. The results are expected to support an operational air iv quality forecast for Macao. The work involved two phases. On a first phase, the models utilized meteorological and air quality variables based on five years of historical data, from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for validation purposes. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.78 to 0.93) for all pollutants. On a second phase, these models were used with 2019 validation data, while a new set of models based on a more extended historical data series, from 2013 to 2018, were also validated with 2019 data. There were no significant differences in the coefficients of determination (R2) and minor improvements in root mean square errors (RMSE), mean absolute errors (MAE) and biases (BIAS) between the 2013 to 2016 and the 2013 to 2018 data models. In addition, for one air quality monitoring station (Taipa Ambient), the 2013 to 2018 model was applied for two days ahead (D2) forecast and the coefficient of determination (R2) was considerably less accurate to the one day ahead (D1) forecast, but still able to provide a reliable air quality forecast for Macao. To understand if the prediction model was robust to extreme variations in v pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and a low pollution episode during 2020. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration for PM2.5 levels exceeding 55 μg/m3 and the maximum hourly concentration for O3 levels exceeding 400 μg/m3. For the low pollution episode, the 2020 period of implementation of the preventive measures for COVID-19 pandemic was selected, with a low record of daily concentration for PM2.5 levels at 2 μg/m3 and maximum hourly concentration for O3 levels at 50 μg/m3. The 2013 to 2018 model successfully predicted the high pollution episode with high coefficients of determination (0.92 for PM2.5 and 0.82 for O3). Likewise, the low pollution episode was also correctly predicted with high coefficients of determination (0.86 and 0.84 for PM2.5 and O3, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels. Machine learning methods maybe adopted to provide significant improvements in combination of multiple linear regression (MLR) and classification and regression vi tree (CART) to further improve the accuracy of the statistical forecast. The developed air pollution forecasting model may be combined with other measures to mitigate the impact of air pollution in Macao. These may include the establishment of low emission zones (LEZ), as enforced in some European cities, license plate restrictions and lottery policy, as used in some Asian, tax exemptions on electric vehicles (EVs) and exclusive corridors for public transportations. Keywords: Air pollution; Particulate Matter; Ozone; Macao; Statistical air quality forecast; Pollution episodes; Chinese national holiday; COVID-19

  • The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on linear multiple regression (MR) and classification and regression trees (CART) analysis were developed successfully, for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.78 to 0.93) for all pollutants. The models utilized meteorological and air quality variables based on 5 years of historical data, from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for validation purposes. A wide range of meteorological and air quality variables was identified, and only some were selected as significant independent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-h levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum hourly O3 levels for five air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.

  • Statistical methods such as multiple linear regression (MLR) and classification and regression tree (CART) analysis were used to build prediction models for the levels of pollutant concentrations in Macao using meteorological and air quality historical data to three periods: (i) from 2013 to 2016, (ii) from 2015 to 2018, and (iii) from 2013 to 2018. The variables retained by the models were identical for nitrogen dioxide (NO2), particulate matter (PM10), PM2.5, but not for ozone (O3) Air pollution data from 2019 was used for validation purposes. The model for the 2013 to 2018 period was the one that performed best in prediction of the next-day concentrations levels in 2019, with high coefficient of determination (R2), between predicted and observed daily average concentrations (between 0.78 and 0.89 for all pollutants), and low root mean square error (RMSE), mean absolute error (MAE), and biases (BIAS). To understand if the prediction model was robust to extreme variations in pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and the low pollution episode during the period of implementation of the preventive measures for COVID-19 pandemic. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration exceeding 55 μg/m3 and 400 μg/m3, respectively. The 2013 to 2018 model successfully predicted this high pollution episode with high coefficients of determination (of 0.92 for PM2.5 and 0.82 for O3). The low pollution episode for PM2.5 and O3 was identified during the 2020 COVID-19 pandemic period, with a low record of daily concentration for PM2.5 levels at 2 μg/m3 and O3 levels at 50 μg/m3, respectively. The 2013 to 2018 model successfully predicted the low pollution episode for PM2.5 and O3 with a high coefficient of determination (0.86 and 0.84, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels.

  • Despite the levels of air pollution in Macao continuing to improve over recent years, there are still days with high-pollution episodes that cause great health concerns to the local community. Therefore, it is very important to accurately forecast air quality in Macao. Machine learning methods such as random forest (RF), gradient boosting (GB), support vector regression (SVR), and multiple linear regression (MLR) were applied to predict the levels of particulate matter (PM10 and PM2.5) concentrations in Macao. The forecast models were built and trained using the meteorological and air quality data from 2013 to 2018, and the air quality data from 2019 to 2021 were used for validation. Our results show that there is no significant difference between the performance of the four methods in predicting the air quality data for 2019 (before the COVID-19 pandemic) and 2021 (the new normal period). However, RF performed significantly better than the other methods for 2020 (amid the pandemic) with a higher coefficient of determination (R2) and lower RMSE, MAE, and BIAS. The reduced performance of the statistical MLR and other ML models was presumably due to the unprecedented low levels of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggests that RF is the most reliable prediction method for pollutant concentrations, especially in the event of drastic air quality changes due to unexpected circumstances, such as a lockdown caused by a widespread infectious disease.

  • Air pollution is a major concern issue on Macao since the concentration levels of several of the most common pollutants are frequently above the internationally recommended values. The low air quality episodes impacts on human health paired with highly populated urban areas are important motivations to develop forecast methodologies in order to anticipate pollution episodes, allowing establishing warnings to the local community to take precautionary measures and avoid outdoor activities during this period. Using statistical methods (multiple linear regression (MLR) and classification and regression tree (CART) analysis) we were able to develop forecasting models for the main pollutants (NO2, PM2.5, and O3) enabling us to know the next day concentrations with a good skill, translated by high coefficients of determination (0.82–0.90) on a 95% confidence level. The model development was based on six years of historical data, 2013 to 2018, consisting of surface and upper-air meteorological observations and surface air quality observations. The year of 2019 was used for model validation. From an initially large group of meteorological and air quality variables only a few were identified as significant dependent variables in the model. The selected meteorological variables included geopotential height, relative humidity and air temperature at different altitude levels and atmospheric stability characterization parameters. The air quality predictors used included recent past hourly levels of mean concentrations for NO2 and PM2.5 and maximum concentrations for O3. The application of the obtained models provides the expected daily mean concentrations for NO2 and PM2.5 and maximum hourly concentrations O3 for the next day in Taipa Ambient air quality monitoring stations. The described methodology is now operational, in Macao, since 2020.

Last update from database: 4/22/24, 12:37 AM (UTC)

Explore

USJ Theses and Dissertations

Publication year