Your search

Author or contributor
  • The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC–MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10–4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.

  • Uptake and depuration kinetics of 4,4′-dichlorobenzophenone (main metabolite of dicofol) in the edible clam Meretrix meretrix were evaluated through a mesocosm experiment. M. meretrix was exposed to different dicofol concentrations (environmental concentration, D1 = 50 ng/L; supra-environmental concentration, D2 = 500 ng/L) for 15 days, followed by the same depuration period. To accomplish this goal, an analytical method was successfully optimized for 4,4′-DCBP using QuEChERS as extraction method with a range of concentrations 0.3–76.8 ng/g ww quantified by gas chromatography coupled to tandem mass spectrometry. Our results demonstrated different kinetics of accumulation depending on the two dicofol treatments. For D1, the uptake kinetic was best fitted using a plateau followed by one phase association kinetic model, while for D2 a one phase association kinetic model suited better. Similar bioconcentration factors were obtained for both concentrations but only animals exposed to D2, showed 4,4′-DCBP levels above the limits of quantification after 24 h exposure. These animals also showed lower uptake rate (ku) than organisms exposed to D1. During the depuration period, only organisms exposed to D1 successfully depurated after 24 h. On the other hand, although animals exposed to D2 presented higher elimination factor, they did not reach the original levels after depuration. Moreover, values detected in these clams were higher than the Maximum Residue Level (10 ng/g) established by the European legislation. This indicates that longer periods of depuration time than the ones used in this study, may be needed in order to reach safe levels for human consumption. This work also demonstrated that studies on metabolite kinetics during uptake/depuration experiments, could be a new alternative to understand the impact and metabolism of pesticides in the marine environment.

  • Mangroves are a unique group of plants growing along tropical and sub-tropical coastlines, with the ability to remove several types of contaminants such as heavy metals and other persistent organic compounds in coastal waters. However, little attention has been given to the possible role of mangroves in the removal of organochlorinated pesticides (OCPs) from the environment. Used worldwide, these pesticides were banned in the late 80s, withal they can still be quantified in aquatic environments due to their high stability. Moreover, as persistent and lipophilic compounds, OCPs are known for their tendency to bioaccumulate and biomagnify through the food chain, affecting local ecosystems, and potentially human health. This work aimed to investigate the potential benefits of mangrove ecosystems as OCP phytoremediators. For this purpose, a total of seventy-three articles from non-mangrove and mangrove areas around the world were gathered, integrated and re-analysed as a whole. These data include information from four different matrices (water, sediment, benthic fauna and mangrove plants). A common trend of less pesticide contamination in mangrove areas was observed for all the selected matrices. As a complement, average concentrations were discussed considering International Directives, such as the European legislation 2013/39/EU for water policy and the Dutch List together with the International Sediment Quality Guideline, for sediments. Additionally, theoretical risk assessments were also included. Since information regarding OCPs in mangroves ecosystem is very scarce compared to non-mangrove areas, this review provides valuable insights regarding these environments, and the importance of preserving them as a relevant remediation unit.

  • In this study, components of the food-web in Macao wetlands were quantified using stable isotope ratio techniques based on carbon and nitrogen values. The δ13C and δ15N values of particulate organic matter (δ13CPOM and δ15NPOM, respectively) ranged from −30.64 ± 1.0 to −28.1 ± 0.7 ‰, and from −1.11 ± 0.8 to 3.98 ± 0.7 ‰, respectively. The δ13C values of consumer species ranged from −33.94 to −16.92 ‰, showing a wide range from lower values in a freshwater lake and inner bay to higher values in a mangrove forest. The distinct dietary habits of consumer species and the location-specific food source composition were the main factors affecting the δ13C values. The consumer 15N-isotope enrichment values suggested that there were three trophic levels; primary, secondary, and tertiary. The primary consumer trophic level was represented by freshwater herbivorous gastropods, filter-feeding bivalves, and plankton-feeding fish, with a mean δ15N value of 5.052 ‰. The secondary consumer level included four deposit-feeding fish species distributed in Fai Chi Kei Bay and deposit-feeding gastropods in the Lotus Flower Bridge flat, with a mean δ15N value of 6.794 ‰. The tertiary consumers group consisted of four crab species, one shrimp species, and four fish species in the Lotus Flower Bridge Flat, with a mean δ15N value of 13.473 ‰. Their diet mainly comprised organic debris, bottom fauna, and rotten animal tissues. This study confirms the applicability of the isotopic approach in food web studies.

  • Seagrasses play a critical role in coastal ecosystems worldwide, providing various ecosystem services based on their region and genus. In Southeast Asia, where seagrass biodiversity and extents are at their highest, the livelihoods and food security of many coastal communities depend on these plants. Despite their ecological and economic importance, seagrasses face global threats from human activities such as pollution and land use changes. Enhalus acoroides, a widely distributed seagrass species in the tropical Indo-Pacific region, is particularly valuable for coastal management and conservation efforts due to its size and provision of various ecosystem services. Although previous research has indicated that it is less sensitive to environmental changes than other tropical seagrass species, recent reports highlight its vulnerability to siltation and eutrophication. This dissertation aimed to examine how Enhalus responds and adapts to changes in light availability, taking into account both morphological adaptation and phenotypic plasticity. Field surveys, reciprocal transplantation field experiments, and investigations of sexual reproductive effort were conducted in the Bolinao-Anda Reef system (NW Philippines) to evaluate the impact of long-term environmental changes on Enhalus populations. The findings of this study revealed that Enhalus has the capacity to adapt its traits and survive changes in depth, light gradients, and different habitat types. This is evidenced by larger shoots in low-light environments, which is apparently a response to the reduction in light availability, as evidenced in both in situ and experimental setups. Larger leaf surface area in light-reduced setups also had higher concentration of chlorophylls a and b pigments. Transplants from light-reduced environments, although morphologically large, appeared more vulnerable (with low survival values) to environmental changes associated with translocation. Being morphologically large is therefore likely a stress response to light reduction, allocating more energy on light harvesting than sexual reproduction. Reciprocal transplantation experiments indicated a high survival rate, suggesting the potential of Enhalus for use in rehabilitation. However, despite having wider plasticity to adapt to light-limitation, they can be wiped out when threshold is reached. This thesis underscores the need for further research on Enhalus' response to stressors, genetic variation, and adaptive capacity to address conservation and management challenges

Last update from database: 3/29/24, 2:09 PM (UTC)

Explore

USJ Theses and Dissertations

Resource type

Publication year