Your search
Results 45 resources
-
In the wave of digital transformation, Chinese banks have prioritized digital banking services as key strategic goals, aiming to revolutionize the mobile banking experience. This study aims to assess the factors influencing the willingness to use the various financial and contextual services offered through digital banking. Specifically, it is proposed a model based on users' perceptions of mobile banking scenarios and examines how the development of digital banking services influences users' willingness to use them. The study involved qualitative in-depth interviews with 12 mobile banking users, with the interview content analyzed using Nvivo qualitative analysis software. The data analysis identified 9 core coding categories: Financial Professionalism, Security, Marketing Stimulation, Innovative Products, Use Experience, Strong Relationship, Trust, Perceived Usefulness, and Willingness to Use. These categories were further refined to construct a theoretical model of user willingness in digital banking services, drawing from the optimized Technology Acceptance Model (TAM). The findings provide valuable insights for the banking industry in Macau, aiding in understanding customer needs and supporting the positive development of mobile finance and contextual digital banking services in the region.
-
Purpose Retail omnichannel implementation faces barriers hindering accurate and efficient integration across marketing channels. Our desk examination identified a need for a broader perspective in investigating these barriers, moving away from a dominant, narrow approach. This research aims to develop a comprehensive set of items to measure retail omnichannel obstacles, refine the scale and assess its reliability and validity for a robust measurement tool. Design/methodology/approach Our approach combines quantitative and qualitative methods, using data from primary and secondary sources to create and validate the omnichannel obstacles scale. Findings This study emphasises the inclusive nature of retail functional areas, departing from prior literature that examined them in isolation. Instead of focussing on separate domains where retail omnichannel obstacles may arise, we adopt a holistic perspective by integrating previously disconnected elements. Originality/value We assert that challenges in retail omnichannel operations encompass three distinct dimensions: operational efficiency, channel inefficiency, and strategy and organisational culture within retailing. In our final validated measurement model, we consolidate the channel inefficiency dimension and refine the omnichannel obstacles scale to emphasise two areas of consideration.
-
Purpose Retail omnichannel implementation faces barriers hindering accurate and efficient integration across marketing channels. Our desk examination identified a need for a broader perspective in investigating these barriers, moving away from a dominant, narrow approach. This research aims to develop a comprehensive set of items to measure retail omnichannel obstacles, refine the scale and assess its reliability and validity for a robust measurement tool. Design/methodology/approach Our approach combines quantitative and qualitative methods, using data from primary and secondary sources to create and validate the omnichannel obstacles scale. Findings This study emphasises the inclusive nature of retail functional areas, departing from prior literature that examined them in isolation. Instead of focussing on separate domains where retail omnichannel obstacles may arise, we adopt a holistic perspective by integrating previously disconnected elements. Originality/value We assert that challenges in retail omnichannel operations encompass three distinct dimensions: operational efficiency, channel inefficiency, and strategy and organisational culture within retailing. In our final validated measurement model, we consolidate the channel inefficiency dimension and refine the omnichannel obstacles scale to emphasise two areas of consideration.
-
Purpose: This study explores the emotional impact of post-purchase guilt on younger consumers in the Chinese luxury retail market, with a specific focus on the role of Cause-related Marketing (CrM) in mitigating negative emotions across luxury and non-luxury product categories.Design/Methodology/Approach: A quantitative experimental design was utilized, involving 326 respondents exposed to different advertising scenarios. The study tested the impact of CrM on post-purchase guilt in both luxury (high-priced) and non-luxury (moderately priced) product conditions, using a 2 × 2 factorial design. The data were analyzed using ANCOVA to assess the effects of CrM campaigns across conditions.Findings: The results demonstrate that CrM effectively reduces post-purchase guilt across both luxury and non-luxury product categories, providing a moral justification for purchases by linking them to a positive social cause. However, contrary to expectations, the impact of CrM was not significantly stronger in the luxury context compared to non-luxury. This suggests that CrM's influence on post-purchase guilt operates uniformly, regardless of product type.Originality: This research enhances understanding Millennial and Gen Z consumer behavior in the Chinese luxury market. The findings offer actionable insights for luxury brands, highlighting the effectiveness of CrM in addressing guilt-related concerns, thereby informing marketing strategies aimed at younger generations.Keywords: post-purchase guilt, Millennials, Gen Z, Chinese luxury retail industry, cause-related marketing.Acknowledgments: The first author would like to thank CEGE – Research Centre in Management and Economics, funded by The Multiannual Funding Programme of R&D Centres of FCT – Fundação para a Ciência e Tecnologia under the project UIDB/00731/2020. The fourth author would like to thank COMEGI funded by FCT – Fundação para a Ciência e Tecnologia under the project UIDB/04005/2020.DOI: https://doi.org/10.58869/EJABM10(3)/06
-
Objetivo: Explorar a aplicação de inteligência artificial (IA) na predição da idade óssea a partir de imagens de raios-X. Método: Utilizou-se a Metodologia Interdisciplinar para o Desenvolvimento de Tecnologias em Saúde (MIDTS) para desenvolver uma ferramenta de predição. O treinamento foi realizado com redes neurais convolucionais (CNNs) usando um conjunto de dados de 14.036 imagens de raios-X. Resultados: A ferramenta alcançou um coeficiente de determinação (R²) de 0,94807 e um Erro Médio Absoluto (MAE) de 6,97, destacando sua precisão e potencial de aplicação clínica. Conclusão: O projeto demonstrou grande potencial para aprimorar a predição da idade óssea, com possibilidades de evolução conforme a base de dados aumenta e a IA se torna mais sofisticada.
-
Construction projects are complex endeavours, with potential obstacles that can cause delays which can have particularly profound implications potentially impacting on company's financial health, business continuity and reputation. It is becoming increasingly recognised that delays are context-specific and multifaceted, requiring more industry-oriented perceptions. This work proposes the exploratory use of Machine Learning based on Classification and Regression Trees (CART) Decision Trees (DT) to assess the predictive analysis of these approaches, considering surveys (primary data) collected from 100 specialists with different backgrounds and experiences in the construction industry. Survey responses are discussed, followed by the CART DTs, which are used as predictor for clarifying underneath relationship among different variables in a project environment. The major issue presented is related to Project Design, with "The firm is not allowed to apply for an extension of contract period", with two possible predictors, firstly, as the main factor it is found "Mistakes, inconsistencies, and ambiguities in specification and drawing", while other aspect highlights "Poor site supervision and management by the contractor". The results indicate that the correct use of Artificial Intelligence techniques with relevant data are potential tools to support the analysis of scenarios and avoidance of project delays in Project Management.
-
This research focuses on common misconceptions about the factors driving women to purchase footwear impulsively. Its primary objective is to explore how emotional and social triggers specifically influence women's purchasing decisions, contrasting with the traditionally rational consumer models.,An online questionnaire was administered to a sample of women, yielding 199 useable responses.,The findings reveal the key determinants of women's impulsive retail footwear purchases, which include self-regulation, hedonic motivations and the influence of the retail store environment. This research challenges the prevailing assumption that women's passion for shopping is driven solely by inherent characteristics and suggests that external factors substantially shape their impulsive buying behaviour. In summary, the stereotypical portrayal of women as compulsive retail footwear shoppers may result more from external stimuli and environmental factors rather than an intrinsic trait.,This study improves the existing knowledge of women’s impulsive buying behaviour by unveiling the determinants of women's impulsive footwear purchases and assessing whether prevailing stereotypes hold true.
-
This article sets a theoretical foundation to transformative mixed methods research that is rooted in the critical theory of Habermas and Honneth. This addresses Habermas’s knowledge-constitutive interests and communicative action for redressing societal pathologies, and Honneth’s work on (mis)recognition, (dis)respect, and social justice. In doing so, the article argues for broadening the scope and embrace of mixed methods research, to go beyond being empirical research only or largely, and to include theorisation, critical theoretical discourse and its analysis, and ideology critique, as legitimate methods for (transformative) mixed methods research. The article makes a case for these methods as constituting important research methods in themselves in the portfolio of mixed methods research, moving the boundaries of mixed methods research beyond solely empirical studies, and providing emancipatory lenses and consciousness-raising in recognising that transformation takes many forms.
-
PDF | Purpose Whilst the majority of academic studies have focused on the for-profit business-to-consumer type of sharing economy, the community-based... | Find, read and cite all the research you need on ResearchGate
-
Introduction: SARS-CoV-2, a virus responsible for the emergence of the life-threatening disease known as COVID-19, exhibits a diverse range of clinical manifestations. The spectrum of symptoms varies widely, encompassing mild to severe presentations, while a considerable portion of the population remains asymptomatic. COVID-19, primarily a respiratory virus, has been linked to cardiovascular complications in some patients. Notably, cardiac issues can also arise after recovery, contributing to post-acute COVID-19 syndrome, a significant concern for patient health. The present study intends to evaluate the post-acute COVID-19 syndrome cardiovascular effect through ECG by comparing patients affected with cardiac diseases without COVID-19 diagnosis report (class 1) and patients with cardiac pathologies who present post-acute COVID-19 syndrome (class 2). Methods: From 2 body positions, a total of 10 non-linear features, extracted every 1 second under a multi-band analysis performed by Discrete Wavelet Transform (DWT), have been compressed by 6 statistical metrics to serve as inputs for an individual feature analysis by the means of Mann-Whitney U-test and XROC classification. Results and Discussion: 480 Mann-Whitney U-test statistical analyses and XROC discrimination approaches have been done. The percentage of statistical analysis with significant differences (p<0.05) was 30.42% (146 out of 480). The best overall results were obtained by approximating the feature Energy, with the data compressor Kurtosis in the body position Down. Those results were 83.33% of Accuracy, 83.33% of Sensitivity, 83.33% of Specificity and 87.50% of AUC. Conclusions: The results show that the applied methodology can be a way to show changes in cardiac behaviour provoked by post-acute COVID-19 syndrome.
-
Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This paper presents an empirical study that evaluates four existing deep learning models—VGG16, DenseNet, ResNet50, and GoogLeNet—utilizing the Facial Expression Recognition 2013 (FER2013) dataset. The dataset contains seven distinct emotional expressions: angry, disgust, fear, happy, neutral, sad, and surprise. Each model underwent rigorous assessment based on metrics including test accuracy, training duration, and weight file size to test their effectiveness in FER tasks. ResNet50 emerged as the top performer with a test accuracy of 69.46%, leveraging its residual learning architecture to effectively address challenges inherent in training deep neural networks. Conversely, GoogLeNet exhibited the lowest test accuracy among the models, suggesting potential architectural constraints in FER applications. VGG16, while competitive in accuracy, demonstrated lengthier training times and a larger weight file size (512MB), highlighting the inherent balance between model complexity and computational efficiency.
-
The objective is to assess whether the extent to which employee resilience and organizational culture would be significantly related to and statistically predict the three facets of employee work engagement. Resilience was measured by four facets (Determination, Endurance, Adaptability, and Recuperability); and Organization Culture was measured for three types (Bureaucratic, Innovative, and Supportive). The dependent measures were the three facets of Work Engagement (Cognitive, Emotional, and Physical). This research by questionnaire was conducted in 2023. The questionnaires completed by 316 full-time workers revealed that all four facets of employee resilience had significant positive correlations with all three types of work engagement. Also, all three facets of work engagement were significantly higher in Innovative and Supportive cultures compared to Bureaucratic cultures. The regression analyses performed showed that the resilience factors of Determination and Adaptability were strong positive predictors of all three facets of work engagement. Furthermore, Innovative culture had additional positive effects on all three facets of work engagement; while Supportive culture had an additional positive effect on Emotional Work Engagement. The implications of the results for management are also discussed in this paper.
-
<jats:title>Abstract</jats:title><jats:p>This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k‐Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1‐score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.</jats:p>
-
The cosmological constant is normally introduced as an additional term entering the Einstein–Hilbert (EH) action. In this letter, we demonstrate that, instead, it appears naturally from the standard EH action as an invariant term emerging from spacetime symmetries. We then demonstrate that the same constraint emerging from this invariant suppresses the short wavelength modes and it favors the long wavelength ones. In this way, inside the proposed formulation, the observed value for the vacuum energy density is obtained naturally from the zero-point quantum fluctuations.
-
The mutual information method has demonstrated to be very useful for deriving the potential order parameter of a system. Although the method suggests some constraints which help to define this quantity, there is still some freedom in the definition. The method then results inefficient for cases where we have order parameters with a large number of constants in the expansion, which happens when we have many degenerate vacuums. Here, we introduce some additional constraints based on the existence of broken symmetries, which help us to reduce the arbitrariness in the definitions of the order parameter in the proposed mutual information method.
Explore
Academic Units
-
Faculty of Business and Law
(34)
- Alessandro Lampo (2)
- Alexandre Lobo (15)
- Douty Diakite (1)
- Emil Marques (1)
- Florence Lei (5)
- Ivan Arraut (5)
- Jenny Phillips (2)
- Silva, Susana C. (6)
-
Faculty of Health Sciences
(2)
- Angus Kuok (1)
- Michael Lai (1)
-
Faculty of Religious Studies and Philosophy
(2)
- Thomas Cai (2)
-
School of Education
(7)
- Hao Wu (2)
- Keith Morrison (2)
- Mo Chen (2)
- Rochelle Ge (1)
Resource type
United Nations SDGs
- 03 - Good Health and Well-being (1)
- 07 - Affordable and Clean Energy (1)
- 08 - Decent Work and Economic Growth (1)
- 09 - Industry, Innovation and Infrastructure (4)
- 11 - Sustainable Cities and Communities (2)
- 12 - Responsable Consumption and Production (1)
- 13 - Climate Action (3)
- 17 - Partnerships for the Goals (1)
Cooperation
- Brazil (1)