Your search
Results 33 resources
-
In 2020, the World Health Organization declared the Coronavirus Disease 19 a global pandemic. While detecting COVID-19 is essential in controlling the disease, prognosis prediction is crucial in reducing disease complications and patient mortality. For that, standard protocols consider adopting medical imaging tools to analyze cases of pneumonia and complications. Nevertheless, some patients develop different symptoms and/or cannot be moved to a CT-Scan room. In other cases, the devices are not available. The adoption of ambulatory monitoring examinations, such as Electrocardiography (ECG), can be considered a viable tool to address the patient’s cardiovascular condition and to act as a predictor for future disease outcomes. In this investigation, ten non-linear features (Energy, Approximate Entropy, Logarithmic Entropy, Shannon Entropy, Hurst Exponent, Lyapunov Exponent, Higuchi Fractal Dimension, Katz Fractal Dimension, Correlation Dimension and Detrended Fluctuation Analysis) extracted from 2 ECG signals (collected from 2 different patient’s positions). Windows of 1 second segments in 6 ways of windowing signal analysis crops were evaluated employing statistical analysis. Three categories of outcomes are considered for the patient status: Low, Moderate, and Severe, and four combinations for classification scenarios are tested: (Low vs. Moderate, Low vs. Severe, Moderate vs. Severe) and 1 Multi-class comparison (All vs. All)). The results indicate that some statistically significant parameter distributions were found for all comparisons. (Low vs. Moderate—Approximate Entropy p-value = 0.0067 < 0.05, Low vs. Severe—Correlation Dimension p-value = 0.0087 < 0.05, Moderate vs. Severe—Correlation Dimension p-value = 0.0029 < 0.05, All vs. All—Correlation Dimension p-value = 0.0185 < 0.05. The non-linear analysis of the time-frequency representation of the ECG signal can be considered a promising tool for describing and distinguishing the COVID-19 severity activity along its different stages.
-
Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.
-
Quality of life in general population before and during pandemic is topic need to be address by researcher in terms of mobility, self-care, usual activities, pain/discomfort and anxiety/depression. The study was carried out among Saudi population. Data were collected from general population using questionnaire during the period from 22 August 2021 to 10th January 2022. As a result, total 214 participants have included in this study. Among them prevalent age group include 40 years (n= 63, 29.4%) shadowed by the age group 25-35 (n= 61, 28.5%) while above 60 years group were least frequent (n= 1, 0.5%). On questioning the applicants whether they were satisfied with their health and how would they rate their quality of life, their answers were as follows: yes, or satisfied (n= 86, 40.2%), very Satisfied (n= 102, 47.7%) Dissatisfied (n= 11, 5.1%) and neither satisfied nor dissatisfied (n= 15, 7%). Due to pandemic, they were rate quality of life very good (n= 94, 43.9%), good (n= 63, 29.4 %) poor (n= 5, 2.3 %) and neither good and nor poor (n= 52, 24.3 %). During pandemic 96 participants feel no change in their weight but 110 participants respond that there is increase in coffee intake during the pandemic. Similarly increased in smoking habits and decrease rate in social activities (n=119,41.4%). The psychosomatic well-being of people has been interrupted by disturbing their social activities during pandemic.
-
Covid-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting against the virus, enormously tap on the power of AI and its data analytics models for urgent decision supports at the greatest efforts, ever seen from human history. This book showcases a collection of important data analytics models that were used during the epidemic, and discusses and compares their efficacy and limitations. Readers who from both healthcare industries and academia can gain unique insights on how data analytics models were designed and applied on epidemic data. Taking Covid-19 as a case study, readers especially those who are working in similar fields, would be better prepared in case a new wave of virus epidemic may arise again in the near future.
-
No existing review has synthesized key questions about acculturation experiences among international migrant workers. This review aimed to explore (1) What are global migrant workers’ experiences with acculturation and acculturative stress? (2) What are acculturative stress coping strategies used by migrant workers? And (3) how effective are these strategies for migrant workers in assisting their acculturation in the host countries? Peer-reviewed and gray literature, without time limitation, were searched in six databases and included if the study: focused on acculturative stress and coping strategies; was conducted with international migrant workers; was published in English; and was empirical. Eleven studies met the inclusion criteria. Three-layered themes of acculturation process and acculturative stress were identified as: individual layer; work-related layer; and social layer. Three key coping strategies were identified: emotion-focused; problem-focused; and appraisal-focused. These coping strategies were used flexibly to increase coping effectiveness and evidence emerged that a particular type of acculturative stress might be solved more effectively by a specific coping strategy. Migrant workers faced numerous challenges in their acculturative process. Understanding this process and their coping strategies could be used in developing research and interventions to improve the well-being of migrant workers.
-
Following the World Health Organization proclaims a pandemic due to a disease that originated in China and advances rapidly across the globe, studies to predict the behavior of epidemics have become increasingly popular, mainly related to COVID-19. The critical point of these studies is to discuss the disease's behavior and the progression of the virus's natural course. However, the prediction of the actual number of infected people has proved to be a difficult task, due to a wide range of factors, such as mass testing, social isolation, underreporting of cases, among others. Therefore, the objective of this work is to understand the behavior of COVID-19 in the state of Ceará to forecast the total number of infected people and to aid in government decisions to control the outbreak of the virus and minimize social impacts and economics caused by the pandemic. So, to understand the behavior of COVID-19, this work discusses some forecast techniques using machine learning, logistic regression, filters, and epidemiologic models. Also, this work brings a new approach to the problem, bringing together data from Ceará with those from China, generating a hybrid dataset, and providing promising results. Finally, this work still compares the different approaches and techniques presented, opening opportunities for future discussions on the topic. The study obtains predictions with R2 score of 0.99 to short-term predictions and 0.93 to long-term predictions.
-
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations. Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.
-
In February 2020, Macau became one of the first regions where the pandemic of coronavirus or Covid-19 affected the totality of social and economic life leading to increased anxieties over movement and distance. Although Macau has had very few actual cases of the virus – 46 in total –and no deaths from it, the Macau government rapidly instituted a lock down. The aim of this article is to reflect on how the social experience of being in lockdown can provide insights into understanding the type of experience or condition that we provisionally term ‘anxious immobility.’ Such a condition is characterized by a total disruption of everyday rhythms and specifically anxious waiting for the normalization of activity while being the subject of biosocial narratives of quarantine and socially responsible. The paper is based upon 3 months of ethnographic research conducted by two researchers based in Macau. We also reflect upon some aspects of the politics of mobilities in the light of disruptions and friction points between Hong Kong, Macau, mainland China, and the rest of the world.
-
The visual analysis of cardiotocographic examinations is a very subjective process. The accurate detection and segmentation of the fetal heart rate (FHR) features and their correlation with the uterine contractions in time allow a better diagnostic and the possibility of anticipation of many problems related to fetal distress. This paper presents a computerized diagnostic aid system based on digital signal processing techniques to detect and segment changes in the FHR and the uterine tone signals automatically. After a pre-processing phase, the FHR baseline detection is calculated. An auxiliary signal called detection line is proposed to support the detection and segmentation processes. Then, the Hilbert transform is used with an adaptive threshold for identifying fiducial points on the fetal and maternal signals. For an antepartum (before labor) database, the positive predictivity value (PPV) is 96.80% for the FHR decelerations, and 96.18% for the FHR accelerations. For an intrapartum (during labor) database, the PPV found was 91.31% for the uterine contractions, 94.01% for the FHR decelerations, and 100% for the FHR accelerations. For the whole set of exams, PPV and SE were both 100% for the identification of FHR DIP II and prolonged decelerations.
-
This paper presents an algorithm that applies metrics derived from automatic QRS detection and segmentation in electrocardiogram signals for analyzing Heart Rate Variability to study the evolution of metrics in the frequency domain of a clinical procedure. The analysis was performed on three sets of elderly people, who are categorized according to frailty phenotype. The first set was comprised of frail elderly, the second pre-frail elderly, and the third robust elderly. Investigators from many disciplines have been encouraged to contribute to the understanding of molecular and physiological changes in multiple systems that may increase the vulnerability of frail elderly. In this work, the frailty phenotype can be characterized by unintentional weight loss, as self-reported, fatigue assessed by self-report, grip strength (measured directly), physical activity level assessed by self-report and gait speed (measured). The results obtained demonstrate the existence of significant differences between Heart Rate Variability metrics for the three groups, especially considering a higher preponderance for sympathetic nervous system for the group of robust patients in response to postural maneuver.
Explore
Academic Units
Resource type
- Book (3)
- Book Section (15)
- Conference Paper (2)
- Journal Article (10)
- Presentation (3)
United Nations SDGs
Publication year
- Between 2000 and 2025 (33)