Your search
Results 2 resources
-
<jats:p>Personalized recommendation plays an important role in many online service fields. In the field of tourism recommendation, tourist attractions contain rich context and content information. These implicit features include not only text, but also images and videos. In order to make better use of these features, researchers usually introduce richer feature information or more efficient feature representation methods, but the unrestricted introduction of a large amount of feature information will undoubtedly reduce the performance of the recommendation system. We propose a novel heterogeneous multimodal representation learning method for tourism recommendation. The proposed model is based on two-tower architecture, in which the item tower handles multimodal latent features: Bidirectional Long Short-Term Memory (Bi-LSTM) is used to extract the text features of items, and an External Attention Transformer (EANet) is used to extract image features of items, and connect these feature vectors with item IDs to enrich the feature representation of items. In order to increase the expressiveness of the model, we introduce a deep fully connected stack layer to fuse multimodal feature vectors and capture the hidden relationship between them. The model is tested on the three different datasets, our model is better than the baseline models in NDCG and precision.</jats:p>
-
Recently, a lot of Chinese patients consult treatment plans through social networking platforms, but the Chinese medical text contains rich information, including a large number of medical nomenclatures and symptom descriptions. How to build an intelligence model to automatically classify the text information consulted by patients and recommend the correct department for patients is very important. In order to address the problem of insufficient feature extraction from Chinese medical text and low accuracy, this paper proposes a dual channel Chinese medical text classification model. The model extracts feature of Chinese medical text at different granularity, comprehensively and accurately obtains effective feature information, and finally recommends departments for patients according to text classification. One channel of the model focuses on medical nomenclatures, symptoms and other words related to hospital departments, gives different weights, calculates corresponding feature vectors with convolution kernels of different sizes, and then obtains local text representation. The other channel uses the BiGRU network and attention mechanism to obtain text representation, highlighting the important information of the whole sentence, that is, global text representation. Finally, the model uses full connection layer to combine the representation vectors of the two channels, and uses Softmax classifier for classification. The experimental results show that the accuracy, recall and F1-score of the model are improved by 10.65%, 8.94% and 11.62% respectively compared with the baseline models in average, which proves that our model has better performance and robustness.