Your search
Results 4 resources
-
The classification of emotions based on facial expressions have been a new topic of research in recent years, especially in marketing and consumer behavior areas. However, there is lack of studies to understand how the research topic is developed in terms of bibliometric data. Therefore, the purpose of this work is to provide a bibliometric analysis of the research on the analysis of facial expressions for marketing and consumer behavior, identifying the state of the art, the latest research direction, and other indicators. We extracted data from Web of Science (WOS) platform, considering its core database, resulting in a total of 117 articles. The software Vosviewer was used to analyze the data and graphically visualize the results. This study indicates some of the most influential authors citations and coupling analysis in this specific field, identifies journals with the most published articles, and provide trends of the research area based on the analysis of keywords and corresponding number of articles per year. The results shows that 11 articles (9.4%) were cited more than 100 times, and the two most prolific authors published 5 articles, and the two most influential authors are Bouaziz Sofien and Pauly mark(270 citations) in this field. Of the 117 articles retrieved by WOS, more than 70% were published in high impact journals. The bibliometric analysis of the existing work in this study provides a valuable and reliable reference for researchers in this field and makes a reasonable prediction of the research direction trends.
-
Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This paper presents an empirical study that evaluates four existing deep learning models—VGG16, DenseNet, ResNet50, and GoogLeNet—utilizing the Facial Expression Recognition 2013 (FER2013) dataset. The dataset contains seven distinct emotional expressions: angry, disgust, fear, happy, neutral, sad, and surprise. Each model underwent rigorous assessment based on metrics including test accuracy, training duration, and weight file size to test their effectiveness in FER tasks. ResNet50 emerged as the top performer with a test accuracy of 69.46%, leveraging its residual learning architecture to effectively address challenges inherent in training deep neural networks. Conversely, GoogLeNet exhibited the lowest test accuracy among the models, suggesting potential architectural constraints in FER applications. VGG16, while competitive in accuracy, demonstrated lengthier training times and a larger weight file size (512MB), highlighting the inherent balance between model complexity and computational efficiency.
-
<jats:p>Facial expression recognition (FER) is essential for discerning human emotions and is applied extensively in big data analytics, healthcare, security, and user experience enhancement. This study presents a comprehensive evaluation of ten state-of-the-art deep learning models—VGG16, VGG19, ResNet50, ResNet101, DenseNet, GoogLeNet V1, MobileNet V1, EfficientNet V2, ShuffleNet V2, and RepVGG—on the task of facial expression recognition using the FER2013 dataset. Key performance metrics, including test accuracy, training time, and weight file size, were analyzed to assess the learning efficiency, generalization capabilities, and architectural innovations of each model. EfficientNet V2 and ResNet50 emerged as top performers, achieving high accuracy and stable convergence using compound scaling and residual connections, enabling them to capture complex emotional features with minimal overfitting. DenseNet, GoogLeNet V1, and RepVGG also demonstrated strong performance, leveraging dense connectivity, inception modules, and re-parameterization techniques, though they exhibited slower initial convergence. In contrast, lightweight models such as MobileNet V1 and ShuffleNet V2, while excelling in computational efficiency, faced limitations in accuracy, particularly in challenging emotion categories like “fear” and “disgust”. The results highlight the critical trade-offs between computational efficiency and predictive accuracy, emphasizing the importance of selecting appropriate architecture based on application-specific requirements. This research contributes to ongoing advancements in deep learning, particularly in domains such as facial expression recognition, where capturing subtle and complex patterns is essential for high-performance outcomes.</jats:p>
Explore
Academic Units
Resource type
- Conference Paper (1)
- Journal Article (3)