Your search

In authors or contributors
Resource type
  • In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks, the algorithm introduces the concept of dynamic artificial potential field. For the multiple obstacles encountered in the process of USV sailing, based on the International Regulations for Preventing Collisions at Sea (COLREGS), the USV determines whether the next step will fall into local optimization through the discrimination mechanism. The local potential field of the USV will dynamically adjust, and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions. The objective function and cost function are designed at the same time, so that the USV can smoothly switch between the global path and the local obstacle avoidance. The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment, and take navigation time and economic cost into account.

  • <jats:title>Abstract</jats:title> <jats:p> <jats:italic>Objective.</jats:italic> Mild cognitive impairment (MCI) is a precursor stage of dementia characterized by mild cognitive decline in one or more cognitive domains, without meeting the criteria for dementia. MCI is considered a prodromal form of Alzheimer’s disease (AD). Early identification of MCI is crucial for both intervention and prevention of AD. To accurately identify MCI, a novel multimodal 3D imaging data integration graph convolutional network (GCN) model is designed in this paper. <jats:italic>Approach.</jats:italic> The proposed model utilizes 3D-VGGNet to extract three-dimensional features from multimodal imaging data (such as structural magnetic resonance imaging and fluorodeoxyglucose positron emission tomography), which are then fused into feature vectors as the node features of a population graph. Non-imaging features of participants are combined with the multimodal imaging data to construct a population sparse graph. Additionally, in order to optimize the connectivity of the graph, we employed the pairwise attribute estimation (PAE) method to compute the edge weights based on non-imaging data, thereby enhancing the effectiveness of the graph structure. Subsequently, a population-based GCN integrates the structural and functional features of different modal images into the features of each participant for MCI classification. <jats:italic>Main results.</jats:italic> Experiments on the AD Neuroimaging Initiative demonstrated accuracies of 98.57%, 96.03%, and 96.83% for the normal controls (NC)-early MCI (EMCI), NC-late MCI (LMCI), and EMCI-LMCI classification tasks, respectively. The AUC, specificity, sensitivity, and F1-score are also superior to state-of-the-art models, demonstrating the effectiveness of the proposed model. Furthermore, the proposed model is applied to the ABIDE dataset for autism diagnosis, achieving an accuracy of 91.43% and outperforming the state-of-the-art models, indicating excellent generalization capabilities of the proposed model. <jats:italic>Significance.</jats:italic> This study demonstrate<jats:bold>s</jats:bold> the proposed model’s ability to integrate multimodal imaging data and its excellent ability to recognize MCI. This will help achieve early warning for AD and intelligent diagnosis of other brain neurodegenerative diseases.</jats:p>

Last update from database: 11/13/25, 7:01 PM (UTC)