Your search

In authors or contributors
  • <jats:p>The mass production of uniform, high-quality polymer nanofibers remains a challenge. To enhance spinning yield, a multi-string standing wave electrospinning apparatus was developed by incorporating a string array into a standing wave electrospinning device. The process parameters such as string spacing, quantity, and phase difference were optimized, and their effects on the electric field distribution within the spinning area were analyzed using electric field simulations. When the string spacing was less than 40 mm or the number of strings exceeded two, the electric field strength significantly decreased due to electric field interference. However, this interference could be effectively mitigated by setting the string standing wave phase difference to half a period. The optimal string array parameters were identified as string spacing of 40 mm, two strings, and a phase difference of half a period. Multi-string standing wave electrospinning produced fibers with diameters similar to those obtained with single-string standing wave electrospinning (178 ± 72 nm vs. 173 ± 48 nm), but the yield increased by 88.7%, reaching 2.17 g/h, thereby demonstrating the potential for the large-scale production of nanofibers. This work further refined the standing wave electrospinning process and provided valuable insights for optimizing wire-type electrospinning processes.</jats:p>

  • <jats:p>Antibiotic pollution poses a serious environmental concern worldwide, posing risks to ecosystems and human well-being. Transforming waste activated sludge into adsorbents for antibiotic removal aligns with the concept of utilizing waste to treat waste. However, the adsorption efficiency of these adsorbents is currently limited. This study identified KOH modification as the most effective method for enhancing tetracycline (TC) adsorption by sludge biochar through a comparative analysis of acid, alkali, and oxidant modifications. The adsorption characteristics of TC upon unmodified sludge biochar (BC) as well as KOH-modified sludge biochar (BC-KOH) were investigated in terms of equilibrium, kinetics, and thermodynamics. BC-KOH exhibited higher porosity, greater specific surface area, and increased abundance of oxygen-based functional groups compared to BC. The TC adsorption on BC-KOH conformed the Elovich and Langmuir models, with a maximum adsorption capacity of 243.3 mg/g at 298 K. The adsorption mechanisms included ion exchange, hydrogen bonding, pore filling, and electrostatic adsorption, as well as π-π interactions. Interference with TC adsorption on BC-KOH was observed with HCO3−, PO43−, Ca2+, and Mg2+, whereas Cl−, NO3−, and SO42− ions exhibited minimal impact on the adsorption process. Following three cycles of utilization, there was a slight 5.94% reduction in the equilibrium adsorption capacity, yet the adsorption capacity remained 4.5 times greater than that of unmodified sludge BC, underscoring its significant potential for practical applications. This research provided new insights to the production and application of sludge biochar for treating antibiotic-contaminated wastewater.</jats:p>

Last update from database: 11/12/25, 7:01 PM (UTC)