Your search

In authors or contributors
  • There are a large number of symptom consultation texts in medical and healthcare Internet communities, and Chinese health segmentation is more complex, which leads to the low accuracy of the existing algorithms for medical text classification. The deep learning model has advantages in extracting abstract features of text effectively. However, for a large number of samples of complex text data, especially for words with ambiguous meanings in the field of Chinese medical diagnosis, the word-level neural network model is insufficient. Therefore, in order to solve the triage and precise treatment of patients, we present an improved Double Channel (DC) mechanism as a significant enhancement to Long Short-Term Memory (LSTM). In this DC mechanism, two channels are used to receive word-level and char-level embedding, respectively, at the same time. Hybrid attention is proposed to combine the current time output with the current time unit state and then using attention to calculate the weight. By calculating the probability distribution of each timestep input data weight, the weight score is obtained, and then weighted summation is performed. At last, the data input by each timestep is subjected to trade-off learning to improve the generalization ability of the model learning. Moreover, we conduct an extensive performance evaluation on two different datasets: cMedQA and Sentiment140. The experimental results show that the DC-LSTM model proposed in this paper has significantly superior accuracy and ROC compared with the basic CNN-LSTM model.

  • —Orthogonal time frequency space (OTFS) modulation, combined with massive multiple-input–multiple-output (MIMO) technology, offers robust performance in high-mobility environments and high-user densities by capturing the full diversity of the wireless channel and effectively utilizing spatial multiplexing. This article introduces an adaptive block sparse backtracking (ABSB) algorithm designed to enhance channel estimation in OTFS with massive MIMO (massive MIMO-OTFS) systems. The proposed ABSB algorithm features dynamic block size adjustment based on the residual signal, improving its adaptability to the varying sparsity structure of the channel. Additionally, the algorithm extends the selection range of related block atoms to increase redundancy, reducing the risk of underfitting. Comprehensive simulation results demonstrate that the ABSB algorithm significantly outperforms traditional pilot-based methods in terms of channel estimation accuracy. It also surpasses the block orthogonal matching pursuit (BOMP) method as well as other classical compressed sensing methods. Specifically, the ABSB algorithm achieves up to a 20% reduction in estimation error compared to some of these traditional methods. The enhanced adaptability and robustness of the ABSB algorithm make it a promising solution for channel estimation in massive MIMO-OTFS systems, paving the way for more reliable and efficient next-generation wireless communications.

Last update from database: 12/20/25, 7:01 PM (UTC)