Your search
Results 3 resources
-
Statistical methods such as multiple linear regression (MLR) and classification and regression tree (CART) analysis were used to build prediction models for the levels of pollutant concentrations in Macao using meteorological and air quality historical data to three periods: (i) from 2013 to 2016, (ii) from 2015 to 2018, and (iii) from 2013 to 2018. The variables retained by the models were identical for nitrogen dioxide (NO2), particulate matter (PM10), PM2.5, but not for ozone (O3) Air pollution data from 2019 was used for validation purposes. The model for the 2013 to 2018 period was the one that performed best in prediction of the next-day concentrations levels in 2019, with high coefficient of determination (R2), between predicted and observed daily average concentrations (between 0.78 and 0.89 for all pollutants), and low root mean square error (RMSE), mean absolute error (MAE), and biases (BIAS). To understand if the prediction model was robust to extreme variations in pollutants concentration, a test was performed under the circumstances of a high pollution episode for PM2.5 and O3 during 2019, and the low pollution episode during the period of implementation of the preventive measures for COVID-19 pandemic. Regarding the high pollution episode, the period of the Chinese National Holiday of 2019 was selected, in which high concentration levels were identified for PM2.5 and O3, with peaks of daily concentration exceeding 55 μg/m3 and 400 μg/m3, respectively. The 2013 to 2018 model successfully predicted this high pollution episode with high coefficients of determination (of 0.92 for PM2.5 and 0.82 for O3). The low pollution episode for PM2.5 and O3 was identified during the 2020 COVID-19 pandemic period, with a low record of daily concentration for PM2.5 levels at 2 μg/m3 and O3 levels at 50 μg/m3, respectively. The 2013 to 2018 model successfully predicted the low pollution episode for PM2.5 and O3 with a high coefficient of determination (0.86 and 0.84, respectively). Overall, the results demonstrate that the statistical forecast model is robust and able to correctly reproduce extreme air pollution events of both high and low concentration levels.
-
The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on linear multiple regression (MR) and classification and regression trees (CART) analysis were developed successfully, for Macao, to predict the next day concentrations of NO2, PM10, PM2.5, and O3. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.78 to 0.93) for all pollutants. The models utilized meteorological and air quality variables based on 5 years of historical data, from 2013 to 2017. Data from 2013 to 2016 were used to develop the statistical models and data from 2017 was used for validation purposes. A wide range of meteorological and air quality variables was identified, and only some were selected as significant independent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-h levels. The models were applied in forecasting the next day average daily concentrations for NO2 and PM and maximum hourly O3 levels for five air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.
Explore
Academic Units
Resource type
Publication year
-
Between 2000 and 2025
(3)
-
Between 2010 and 2019
(2)
- 2019 (2)
-
Between 2020 and 2025
(1)
- 2020 (1)
-
Between 2010 and 2019
(2)