Your search
Results 7 resources
-
Digital Factory (DF) planning is the key of intelligent factory construction, where intelligent production technologies of big data analysis, cloud computing, blockchain, Internet of Things, artificial intelligence, 5G, Time Sensitive Network (TSN), Digital Twin (DT), additive manufacturing are included. By applying the modern techniques, DF performs great advantages on the aspects of product lifecycle management, enterprise resource planning, operation management, supply chain management, real-time database construction, advanced process control, as well as the new technologies of distributed control system and fieldbus control system. This article delivers a review of key issues of DF top-level design and planning from the aspects of networking, precision, automation and digitalization. Solutions are explored based on 5G, TSN and DT advanced technologies, literately and practically. Additionally, the article describes the method and application of efficient big data comprehensive solution. Therefore, this study contributes valuable decision-making support for DF applications.
-
Traditional text classification models have some drawbacks, such as the inability of the model to focus on important parts of the text contextual information in text processing. To solve this problem, we fuse the long and short-term memory network BiGRU with a convolutional neural network to receive text sequence input to reduce the dimensionality of the input sequence and to reduce the loss of text features based on the length and context dependency of the input text sequence. Considering the extraction of important features of the text, we choose the long and short-term memory network BiLSTM to capture the main features of the text and thus reduce the loss of features. Finally, we propose a BiGRU-CNN-BiLSTM model (DCRC model) based on CNN, GRU and LSTM, which is trained and validated on the THUCNews and Toutiao News datasets. The model outperformed the traditional model in terms of accuracy, recall and F1 score after experimental comparison.
-
Medical classification is affected by many factors, and the traditional medical classification is usually restricted by factors such as too long text, numerous categories and so on. In order to solve these problems, this paper uses word vector and word vector to mine the text deeply, considering the problem of scattered key features of medical text, introducing long-term and short-term memory network to effectively retain the features of historical information in long text sequence, and using the structure of CNN to extract local features of text, through attention mechanism to obtain key features, considering the problems of many diseases, by using hierarchical classification. To stratify the disease. Combined with the above ideas, a deep DLCF model suitable for long text and multi-classification is designed. This model has obvious advantages in CMDD and other datasets. Compared with the baseline models, this model is superior to the baseline model in accuracy, recall and other indicators.
-
Continuous cardiac monitoring has been increasingly adopted to prevent heart diseases, especially the case of Chagas disease, a chronic condition that can degrade the heart condition, leading to sudden cardiac death. Unfortunately, a common challenge for these systems is the low-quality and high level of noise in ECG signal collection. Also, generic techniques to assess the ECG quality can discard useful information in these so-called chagasic ECG signals. To mitigate this issue, this work proposes a 1D CNN network to assess the quality of the ECG signal for chagasic patients and compare it to the state of art techniques. Segments of 10 s were extracted from 200 1-lead ECG Holter signals. Different feature extractions were considered such as morphological fiducial points, interval duration, and statistical features, aiming to classify 400 segments into four signal quality types: Acceptable ECG, Non-ECG, Wandering Baseline (WB), and AC Interference (ACI) segments. The proposed CNN architecture achieves a $$0.90 \pm 0.02$$accuracy in the multi-classification experiment and also $$0.94 \pm 0.01$$when considering only acceptable ECG against the other three classes. Also, we presented a complementary experiment showing that, after removing noisy segments, we improved morphological recognition (based on QRS wave) by 33% of the entire ECG data. The proposed noise detector may be applied as a useful tool for pre-processing chagasic ECG signals.
-
Fast and efficient malaria diagnostics are essential in efforts to detect and treat the disease in a proper time. The standard approach to diagnose malaria is a microscope exam, which is submitted to a subjective interpretation. Thus, the automating of the diagnosis process with the use of an intelligent system capable of recognizing malaria parasites could aid in the early treatment of the disease. Usually, laboratories capture a minimum set of images in low quality using a system of microscopes based on mobile devices. Due to the poor quality of such data, conventional algorithms do not process those images properly. This paper presents the application of deep learning techniques to improve the accuracy of malaria plasmodium detection in the presented context. In order to increase the number of training sets, deep convolutional generative adversarial networks (DCGAN) were used to generate reliable training data that were introduced in our deep learning model to improve accuracy. A total of 6 experiments were performed and a synthesized dataset of 2.200 images was generated by the DCGAN for the training phase. For a real image database with 600 blood smears with malaria plasmodium, the proposed Deep Learning architecture obtained the accuracy of 100% for the plasmodium detection. The results are promising and the solution could be employed to support a mass medical diagnosis system.
Explore
Academic Units
Resource type
- Book Section (7)
United Nations SDGs
Cooperation
- Brazil (1)
-
China
(2)
- Henan University (2)
- Macau (1)