Your search

In authors or contributors
Resource type
  • <jats:p>PM10 emissions have been a significant concern in rock crushing and quarry operations (study site #1) and iron ore mining projects (study site #2) in certain regions of Malaysia, posing fears to the health and well-being of nearby communities with severe air pollution. To address this issue, it is crucial to develop effective mitigation strategies to reduce dust particle emissions like PM10 in the ambient air. The AERMOD model was applied to predict PM10 emissions during quarry operations and iron ore mining projects, both with and without control measures. The results indicated that PM10 emissions were reduced when control measures were implemented. The modeling result shows the mean PM10 concentration with and without control measures in study site #1 is 74.85 µg/m3 and 20,557.69 µg/m3, respectively. In comparison, the average PM10 concentration with and without control measures in study site #2 is 53.95 µg/m3 and 135.69 µg/m3. Therefore, the control measure has successfully reduced the PM10 concentrations by 99.90% and 60.24% in study sites #1 and #2, respectively, and ensures the air quality complies with the Malaysian Ambient Air Quality Guidelines (MAAQG) 24 h threshold limits at 100 µg/m3. In addition, the AERMOD modeling results showed that mitigation measures performed better in rock crushing and quarry operations than in iron ore mining projects in this case study.</jats:p>

  • <jats:p>Electric vehicles (EVs) must be used as the primary mode of transportation as part of the gradual transition to more environmentally friendly clean energy technology and cleaner power sources. Vehicle-to-grid (V2G) technology has the potential to improve electricity demand, control load variability, and improve the sustainability of smart grids. The operation and principles of V2G and its varieties, the present classifications and types of EVs sold on the market, applicable policies for V2G and business strategy, implementation challenges, and current problem-solving techniques have not been thoroughly examined. This paper exposes the research gap in the V2G area and more accurately portrays the present difficulties and future potential in V2G deployment globally. The investigation starts by discussing the advantages of the V2G system and the necessary regulations and commercial representations implemented in the last decade, followed by a description of the V2G technology, charging communication standards, issues related to V2G and EV batteries, and potential solutions. A few major issues were brought to light by this investigation, including the lack of a transparent business model for V2G, the absence of stakeholder involvement and government subsidies, the excessive strain that V2G places on EV batteries, the lack of adequate bidirectional charging and standards, the introduction of harmonic voltage and current into the grid, and the potential for unethical and unscheduled V2G practices. The results of recent studies and publications from international organizations were altered to offer potential answers to these research constraints and, in some cases, to highlight the need for further investigation. V2G holds enormous potential, but the plan first needs a lot of financing, teamwork, and technological development.</jats:p>

Last update from database: 11/2/25, 7:01 PM (UTC)