Your search
Results 107 resources
-
With the rapid development of digital media, internet celebrity live streaming has become a key factor in influencing the consumer decision-making of adolescents, presenting unique regional characteristics in different socio-cultural and economic contexts. This study investigates the differences in consumption habits among adolescents in Macau and Mainland China and their impact on the innovation and reform of the commercial model of internet celebrity live streaming. The methodology employs a questionnaire survey and data analysis to systematically compare the consumption behavior of adolescents in Macao and mainland China, collecting live streaming consumption habits of adolescents in both regions. Statistical methods are used to compare and analyze the consumption patterns within the regions. The analysis indicates that influencers, as internet celebrities with a large number of fans on social media, have a significant impact on adolescents' consumption decisions through their recommendations and evaluations. Firstly, the convenience and diversity of e-commerce platforms provide adolescents with a wealth of consumption choices, such as characteristics and usage effects of products. Secondly, the recommendations and evaluations of influencers have become an important reference for adolescents' consumption. Results show that adolescents in Macau tend to seek entertainment and interaction in their consumption of internet celebrity live streaming, whereas those in Mainland China place greater emphasis on the practicality of the live streaming content and the cost-effectiveness of the products. Moreover, the study reveals the roles of socio-cultural and economic levels in the differences in consumption between the two regions. Based on these insights, it is recommended that live streaming platforms should advance the innovation and reform of their business models to cater to different market characteristics—such as optimizing content recommendation algorithms, enhancing interactive elements, and improving the integration of e-commerce features, thereby promoting business sustainability and economic benefits
-
Projects are tactical and operational initiatives, and achieving specific outcomes through projects can help organizations achieve strategic goals. The effective use of project management tools and techniques is essential to achieve successful results, since the goal is to maximize the realization of the project's plan by effectively using the budget, time, and resources provided by the project owner to achieve the project's original purpose. The Project Management Maturity Model (PMMM) is a tool for measuring project management capabilities and is essential to improve project and portfolio performance in different industries. The main objective of this research is to analyze and characterize the maturity level and capacity of the IT industry in Macau and HengQin based on the assessment of the PMMM. The research also aims to assess and compare the maturity level in the IT industry in Macau and HengQin. An online survey was conducted and sent to IT project managers from Macau and HenqQin. A total of 34 responses were collected, divided into 3 different parts: Part I - General Information, Part II - Project Management Areas, and Part III - Perception. The results indicate that, in general, Project Managers state that their companies do not follow Project Management standards and best practices, classifying as Low and Very Low essential PM areas such as Planning and Scheduling (68%), Scope (61%) and Communications (64%). From a comparison perspective, project managers in Macau follow less formal frameworks than Hengqin in managing the triple constraints of the project. The collected data also indicate that Macau's communication management and stakeholder engagement are less mature than Hengqin's. Furthermore, the data indicate that maturity level is not necessarily related to education level, which means not higher education has a higher maturity level. Recommendations are provided for the IT industry in both areas, and specific comments are provided for each group or professionals. In conclusion, this work allows a novel characterization and a better understanding of the Project Management adoption and maturity level of the IT Industry in Macau and Hengqin
-
Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.
-
Human emotions can be meticulously associated with decision-making, and emotion can generate behaviours. Due to the fact that it could be bias and exhaustively complex to examine how human beings make choices, important groups of study in finance are stock traders and non-traders. The objective of this work is to analyze the connection between emotions and the decision-making process of investors and non-investors to understand how emotional arousal might dictate the process of deciding policy. As facial expressions are fleeting, neuroscience tools such as AFFDEX (Real-Time Facial Expression Analysis), Eye-Tracking, and GSR (galvanic skin response) were adopted to facilitate the experiment and its accompanying analysis process. Thirty-seven participants attended the study, ranging from 18 to 72 years old; the distribution of investors and non-investors was twenty-four and thirteen, respectively. The experiment initially disclosed a thought-provoking result between the two groups under the certainty and risk-seeking prospect theory; there were more risk-takers among non-investors at 75%, while investors were inclined toward certainty at 79.17%. The implication could be that the non-investing individuals were less complex in thought and therefore pursued higher returns besides a high probability of losing the game. In addition, the automatic emotion classification system indicates that when non-investors confronted a stock trending chart beyond their acquaintance or knowledge, they were psychologically exposed to fear, anger, sadness, and surprise. Investors, on the contrary, were detected with disgust, joy, contempt, engagement, sadness, and surprise, where sadness and surprise overlapped in both parties. Under time pressure conditions, 54.05% of investors or non-investors tend to make decisions after the peak(s) of emotional arousal. Variations were found in the deciding points of the slopes: 2.70% were decided right after the peak(s), 37.84% waited until the emotions turned stable, and 13.51% were determined as the emotional indicators started to slide downwards. Several combinations of emotional responses were associated with decisions. For example, negative emotions could induce passive decision-making, in this case, to sell the stock; nevertheless, it was also examined that as the slope slipped downwards to a particular horizontal point, the individuals became more optimistic and selected the "BUY" option. The support of physiological monitoring tools makes it possible to capture the individuals' responses and discover the science of decision-making. Future works may consider expanding the study to more significant demographic populations for further discoveries
-
Artificial intelligence (AI) and deep learning (DL) are advancing in stock market prediction, attracting the attention of researchers in computer science and finance. This bibliometric review analyzes 525 articles published from 1991 to 2024 in Scopus-indexed journals, utilizing VOSviewer software to identify key research trends, influential contributors, and burgeoning themes. The bibliometric analysis encompasses a performance analysis of the most prominent scientific contributors and a network analysis of scientific mapping, which includes co-authorship, co-occurrence, citation, bibliographical coupling, and co-citation analyses enabled by the VOSviewer software. Among the 693 countries, significant hubs of knowledge production include China, the US, India, and the UK, highlighting the global relevance of the field. Various AI and DL technologies are increasingly employed in stock price predictions, with artificial neural networks (ANN) and other methods such as long short-term memory (LSTM), Random Forest, Sentiment Analysis, Support Vector Machine/Regression (SVM/SVR), among the 1399 keyword counts in publications. Influential studies such as LeBaron (1999) and Moghaddam (2016) have shaped foundational research in 8159 citations. This review offers original insights into the bibliometric landscape of AI and DL applications in finance by mapping global knowledge production and identifying critical AI methods advancing stock market prediction. It enables finance professionals to learn about technological developments and trends to enhance decision-making and gain market advantage.
-
Even with more than 12 billion vaccine doses administered globally, the Covid-19 pandemic has caused several global economic, social, environmental, and healthcare impacts. Computer Aided Diagnostic (CAD) systems can serve as a complementary method to aid doctors in identifying regions of interest in images and help detect diseases. In addition, these systems can help doctors analyze the status of the disease and check for their progress or regression. To analyze the viability of using CNNs for differentiating Covid-19 CT positive images from Covid-19 CT negative images, we used a dataset collected by Union Hospital (HUST-UH) and Liyuan Hospital (HUST-LH) and made available at the Kaggle platform. The main objective of this chapter is to present results from applying two state-of-the-art CNNs on a Covid-19 CT Scan images database to evaluate the possibility of differentiating images with imaging features associated with Covid-19 pneumonia from images with imaging features irrelevant to Covid-19 pneumonia. Two pre-trained neural networks, ResNet50 and MobileNet, were fine-tuned for the datasets under analysis. Both CNNs obtained promising results, with the ResNet50 network achieving a Precision of 0.97, a Recall of 0.96, an F1-score of 0.96, and 39 false negatives. The MobileNet classifier obtained a Precision of 0.94, a Recall of 0.94, an F1-score of 0.94, and a total of 20 false negatives.
-
The gold standard to detect SARS-CoV-2 infection considers testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. In parallel, X-Ray and CT scans play an important role in the diagnosis and treatment processes. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are typical characteristics of pneumonia caused by COVID-19. This chapter presents an AI-based system using multiple Transfer Learning models for COVID-19 classification using Chest X-Rays. In our experimental design, all the classifiers demonstrated satisfactory accuracy, precision, recall, and specificity performance. On the one hand, the Mobilenet architecture outperformed the other CNNs, achieving excellent results for the evaluated metrics. On the other hand, Squeezenet presented a regular result in terms of recall. In medical diagnosis, false negatives can be particularly harmful because a false negative can lead to patients being incorrectly diagnosed as healthy. These results suggest that our Deep Learning classifiers can accurately classify X-ray exams as normal or indicative of COVID-19 with high confidence.
-
The emergence of blockchain technology in 2008 marked a significant milestone in the evolution of digital currencies, paving the way for the emergence of cryptocurrencies such as Bitcoin. Since then, blockchain has undergone four generations of development, expanding its applications across various sectors. In particular, the integration of blockchain into accounting and auditing practices has garnered significant attention due to its potential to transform traditional methods. However, there's a lack of clear understanding of how blockchain impacts traditional auditing practices and finance recordkeeping and the implications for audit quality. Significant challenges and uncertainties hinder its widespread adoption, including technical hurdles, regulatory complexities, and practical barriers. This dissertation aims to determine the transformative impact of blockchain technology on auditing practices and finance recordkeeping. In order to fully understand the impact of blockchain on auditing practices and finance recordkeeping, the dissertation utilizes a mixed sequential research approach that is divided into three phases. The first approach involves gathering qualitative data through interviews with blockchain experts. The second approach involves collecting secondary qualitative data through a systematic literature review to determine the changes that blockchain has brought to traditional auditing practices and finance recordkeeping. This is followed by a bibliometric analysis to identify current trends in blockchain research related to auditing practices and finance recordkeeping. The third approach involves gathering data through an online-focused survey distributed to finance and other industry professionals to determine the challenges organizations face in implementing blockchain technology in auditing practices and finance recordkeeping. Additionally, in phase three, case studies will be conducted based on the survey responses to examine the hindrances and challenges faced by organizations in implementing blockchain and its impact on auditing practices in different regions and among different demographic groups. As the findings indicate, Integrating blockchain technology into accounting and auditing practices can bring about significant improvements in transparency, efficiency, and fraud prevention. However, there are several challenges that must be overcome for successful implementation, such as technical difficulties, regulatory uncertainties, and privacy concerns. To overcome these hurdles, it is necessary to establish clear regulatory frameworks and innovative solutions. Although smart contracts offer automation, they also pose security risks that need to be addressed. Despite these challenges, blockchain has the potential to revolutionize auditing by enabling real-time auditing and enhancing integrity verification. To ensure audit quality, auditors must adapt to new responsibilities and stay up-to-date with emerging trends. Collaboration among stakeholders and continuous education and training programs are key to driving the successful adoption of blockchain technology
-
The Covid-19 pandemic evidenced the need Computer Aided Diagnostic Systems to analyze medical images, such as CT and MRI scans and X-rays, to assist specialists in disease diagnosis. CAD systems have been shown to be effective at detecting COVID-19 in chest X-ray and CT images, with some studies reporting high levels of accuracy and sensitivity. Moreover, it can also detect some diseases in patients who may not have symptoms, preventing the spread of the virus. There are some types of CAD systems, such as Machine and Deep Learning-based and Transfer learning-based. This chapter proposes a pipeline for feature extraction and classification of Covid-19 in X-ray images using transfer learning for feature extraction with VGG-16 CNN and machine learning classifiers. Five classifiers were evaluated: Accuracy, Specificity, Sensitivity, Geometric mean, and Area under the curve. The SVM Classifier presented the best performance metrics for Covid-19 classification, achieving 90% accuracy, 97.5% of Specificity, 82.5% of Sensitivity, 89.6% of Geometric mean, and 90% for the AUC metric. On the other hand, the Nearest Centroid (NC) classifier presented poor sensitivity and geometric mean results, achieving 33.9% and 54.07%, respectively.
-
As the world becomes more globalized, it is now more important than ever for brands and advertisers to find effective ways to engage with consumers of different cultural backgrounds. Developing marketing that targets people of different cultural backgrounds, or multicultural marketing, carries specific nuances and complexities that may make traditional methods fall short. With this being said, there is still a lack of studies that explore the correlation between consumer's cultural background and their overall brand perception. Neuromarketing has proven to be an effective tool to understanding consumer behavior, by utilizing neuroscience tools. To employ a more sophisticated and in-depth understanding of consumer perception, the current research study makes use of neuroscience tools and aims to study the influence of cultural background in brand perception, while in a controlled environment. Using physiological neuroscience tools, namely, facial expression analysis (FEA), electrodermal activity (EDA), and eye-tracking (ET), a total of thirty-eight individuals, with ages between 19 and 50 years old, from 12 different countries and regions, participated in this research study. Findings suggest that participants of different cultural backgrounds perceive multicultural commercials as more favorable than monocultural commercials. However, future research should be done with a larger sample size, as well as include a wider variety of commercials. Research would also benefit from adopting a statistical analysis to help determine the significance of the results obtained
-
In the last few years, the tourism industry has experienced rapid expansion and diversification, making it one of the fastest-growing financial industries in the world. Consequently, the hotel industry has significantly affected the environment's long-term viability. Many hotels have begun voluntarily implementing environmentally sustainable practices as they become more aware of their ecological footprint. There has been a great deal of discussion about the effects of hotel operations on the environment and tourism sustainability in Macau. It is because of these negative impacts that hoteliers have adopted green practices in an attempt to minimize them. By developing sustainability reports, hotels can set goals, measure performance, and manage change, resulting in better sustainability. It could also be viewed as a strategy to enhance the company’s sustainability reporting to ensure stakeholders know what the company does. The objective of this study is twofold based on the analysis of the official sustainability reports of four major hotel chains. Firstly, seven categories of sustainable practices effectively adopted by these chain hotels are identified and clusterized. Second, it is presented in which areas some hotels performed more efficiently than others, considering the UN Sustainable Development Goals (SDGs) as a reference. The results allow a comprehensive clusterized analysis of the industry in a highly developed gaming and entertainment area of South China and create a clear comparison between relevant players and their concerns about sustainability practices.
-
Crowdsensing exploits the sensing abilities offered by smart phones and users' mobility. Users can mutually help each other as a community with the aid of crowdsensing. The potential of crowdsensing has yet to be fully realized for improving public health. A protocol based on gamification to encoura...
-
Association Rule Mining by Aprior method has been one of the popular data mining techniques for decades, where knowledge in the form of item-association rules is harvested from a dataset. The quality of item-association rules nevertheless depends on the concentration of frequent items from the input dataset. When the dataset becomes large, the items are scattered far apart. It is known from previous literature that clustering helps produce some data groups which are concentrated with frequent items. Among all the data clusters generated by a clustering algorithm, there must be one or more clusters which contain suitable and frequent items. In turn, the association rules that are mined from such clusters would be assured of better qualities in terms of high confidence than those mined from the whole dataset. However, it is not known in advance which cluster is the suitable one until all the clusters are tried by association rule mining. It is time consuming if they were to be tested by brute-force. In this paper, a statistical property called prior probability is investigated with respect to selecting the best out of many clusters by a clustering algorithm as a pre-processing step before association rule mining. Experiment results indicate that there is correlation between prior probability of the best cluster and the relatively high quality of association rules generated from that cluster. The results are significant as it is possible to know which cluster should be best used for association rule mining instead of testing them all out exhaustively.
-
In this chapter, a mathematical model explaining generically the propagation of a pandemic is proposed, helping in this way to identify the fundamental parameters related to the outbreak in general. Three free parameters for the pandemic are identified, which can be finally reduced to only two independent parameters. The model is inspired in the concept of spontaneous symmetry breaking, used normally in quantum field theory, and it provides the possibility of analyzing the complex data of the pandemic in a compact way. Data from 12 different countries are considered and the results presented. The application of nonlinear quantum physics equations to model epidemiologic time series is an innovative and promising approach.
-
At the beginning of 2020, the World Health Organization (WHO) started a coordinated global effort to counterattack the potential exponential spread of the SARS-Cov2 virus, responsible for the coronavirus disease, officially named COVID-19. This comprehensive initiative included a research roadmap published in March 2020, including nine dimensions, from epidemiological research to diagnostic tools and vaccine development. With an unprecedented case, the areas of study related to the pandemic received funds and strong attention from different research communities (universities, government, industry, etc.), resulting in an exponential increase in the number of publications and results achieved in such a small window of time. Outstanding research cooperation projects were implemented during the outbreak, and innovative technologies were developed and improved significantly. Clinical and laboratory processes were improved, while managerial personnel were supported by a countless number of models and computational tools for the decision-making process. This chapter aims to introduce an overview of this favorable scenario and highlight a necessary discussion about ethical issues in research related to the COVID-19 and the challenge of low-quality research, focusing only on the publication of techniques and approaches with limited scientific evidence or even practical application. A legacy of lessons learned from this unique period of human history should influence and guide the scientific and industrial communities for the future.
-
It is plausible to assume that the component waves in ECG signals constitute a unique human characteristic because morphology and amplitudes of recorded beats are governed by multiple individual factors. According to the best of our knowledge, the issue of automatically classifying different ’identities’ of QRS morphology has not been explored within the literature. This work proposes five alternative mathematical models for representing different QRS morphologies providing the extraction of a set of features related to QRS shape. The technique incorporates mechanisms of combining the mathematical functions Gaussian, Mexican-Hat and Rayleigh probability density function and also a mechanism for clipping the waveform of those functions. The searching for the optimal parameters which minimize the normalized RMS error between each mathematical model and a given QRS search window enables to find an optimal model. Such modeling behaves as a robust alternative for delineating heartbeats, classifying beat morphologies, detecting subtle and anomalous changes, compression of QRS complex windows among others. The validation process evaluates the ability of each model to represent different QRS morphology classes within 159 full ECG signal records from QT database and 584 QRS search windows from MIT-BIH Arrhythmia database. From the experimental results, we rank the winning rates for which each mathematical model best models and also discriminates the most predominant QRS morphologies Rs, rS, RS, qR, qRs, R, rR’s and QS. Furthermore, the average time errors computed for QRS onset and offset locations when using the corresponding winner mathematical models for delineation purposes were, respectively, 12.87±8.5 ms and 1.47±10.06 ms.
-
The adoption of project management techniques is a crucial decision for corporate governance in construction companies since the management of areas such as risk, cost, and communications is essential for the success or failure of an endeavor. Nevertheless, different frameworks based on traditional or agile methodologies are available with several approaches, which may create several ways to manage projects. The primary purpose of this work is to investigate the adequate project management methodology for the construction industry from a general perspective and consider a case study from Macau. The methodology considered semi-structured interviews and a survey comparing international and local project managers from the construction industry. The interviews indicate that most construction project managers still follow empirical methods with no specific methodology but consider the adoption of traditional waterfall approaches. In contrast, according to the survey, most project managers and construction managers agree that the project's efficacy needs to increase, namely in planning, waste minimization, communication increase, and focus on the Client's feedback. In addition, there seems to be a clear indication that agile methodology could be implemented in several types of projects, including hospitality development projects. A hybrid development approach based on the Waterfall and Agile methodologies as a tool for the project management area may provide a more suitable methodology for project managers to follow.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Arts and Humanities
(1)
- Álvaro Barbosa (1)
-
Faculty of Business and Law
(86)
- Alexandre Lobo (86)
- Douty Diakite (1)
- Emil Marques (1)
- Ivan Arraut (3)
- Sergio Gomes (2)
- Silva, Susana C. (1)
-
Institute for Data Engineering and Sciences
(2)
- George Du Wencai (2)
Resource type
- Book (3)
- Book Section (31)
- Conference Paper (14)
- Journal Article (38)
- Preprint (2)
- Thesis (19)
United Nations SDGs
Student Research and Output
Publication year
- Between 2000 and 2025 (107)