Your search
Results 5 resources
-
In southeast Asia, males of the Siamese fighting fish, Betta splendens, have been selected across centuries for winning paired staged fights and previous work has shown that males from fighter strains are more aggressive than wild-types. This strong directional selection for winners is likely to have targeted aggression-related endocrine systems, and a comparison between fighter and wild-type strains can bring into evidence the key hormones implicated in aggression. Here, we compared the plasma levels of the androgen 11-ketotestosterone (KT) and of the corticosteroid cortisol (F) in F2 males of a fighter and a wild-type strain raised under similar laboratory conditions. We show that F was generally lower in fighter as compared with wild-type males, while no overall differences in KT levels were detected between strains. When presented with a mirror-induced aggressive challenge, post-fight levels of F increased but more significantly so in wild-type males, while KT increased in males of both strains. After the challenge, fighter males had higher levels of KT as compared with wild-type males, while the pattern for F was opposite. As compared with animals in social groups, wild-type males placed under social isolation had lower F levels, while KT decreased for fighters. Taken together, this data suggests that while wild-type males responded to aggression with an increase in circulating levels of both androgens and corticosteroids, males selected for winning fights maintained a blunt F response, increasing only KT levels. These data agree with the hypothesis that a combination of high levels of androgens and low levels of corticosteroids is associated with high aggression. Overall, these results seem to indicate that selection for winning had a stronger impact in the hypothalamus-pituitary-interrenal axis than in the hypothalamus-pituitary–gonadal axis in B. splendens.
-
In Southeast Asia, males of the Siamese fighting fish Betta splendens have been selected across centuries for paired-staged fights. During the selection process, matched for size males fight in a small tank until the contest is resolved. Breeders discard losing batches and reproduce winner batches with the aim of increasing fight performance. We assessed the results of this long-term selection process by comparing under standard laboratory conditions male and female aggressive behaviour of one strain selected for staged fights (“fighters”) and one strain of wild-types. The aggressive response of adult fish was tested against their mirror image or a size-matched conspecific. Fighter males were more aggressive than wild-type males for all measured behaviours. Differences were not only quantitative but the pattern of fight display was also divergent. Fighter males had an overall higher swimming activity, performing frequent fast strikes in the direction of the intruder and displaying from a distance. Wild-type males were less active and exhibited aggressive displays mostly in close proximity to the stimuli. Females of the fighter strain, which are not used for fights, were also more aggressive than wild-type females. Aggressive behaviours were correlated across male and female fighter siblings, suggesting common genetic and physiological mechanisms to male and female aggression in this species. The study further shows that results were largely independent of the stimulus type, with the mirror test inducing similar and less variable responses than the live conspecific presentation. These results suggest that selection for male winners co-selected for high-frequency and metabolic demanding aggressive display in males and also enhanced female aggression, opening a wide range of testable hypothesis about the ultimate and proximate mechanisms of male and female aggression in B. splendens.
-
The levels of air pollution in Macao often exceeded the levels recommended by WHO. In order for the population to take precautionary measures and avoid further health risks under high pollutant exposure, it is important to develop a reliable air quality forecast. Statistical models based on multiple regression (MR) analysis were developed successfully for Macao to predict the next day concentrations of PM10, PM2.5, and NO2. All the developed models were statistically significantly valid with a 95% confidence level with high coefficients of determination (from 0.89 to 0.92) for all pollutants. The models utilized meteorological and air quality variables based on five years of historical data, from 2013 to 2017. The data from 2013 to 2016 were used to develop the statistical models and data from 2017 were used for validation purposes. A wide range of meteorological and air quality variables were identified, and only some were selected as significant dependent variables. Meteorological variables were selected from an extensive list of variables, including geopotential height, relative humidity, atmospheric stability, and air temperature at different vertical levels. Air quality variables translate the resilience of the recent past concentrations of each pollutant and usually are maximum and/or the average of latest 24-hour levels. The models were applied in forecasting the next day average daily concentrations for PM10, PM2.5, and NO2 for the air quality monitoring stations. The results are expected to be an operational air quality forecast for Macao.
Explore
Academic Units
-
Institute of Science and Environment
(5)
- David Gonçalves (3)
- Sara Cardoso (2)
- Thomas Lei (1)
Resource type
- Journal Article (5)
United Nations SDGs
Publication year
- Between 2000 and 2024 (4)
- Unknown (1)