Your search
Results 3 resources
-
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations. Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.
-
Macula fovea detection is a crucial prerequisite towards screening and diagnosing macular diseases. Without early detection and proper treatment, any abnormality involving the macula may lead to blindness. However, with the ophthalmologist shortage and time-consuming artificial evaluation, neither accuracy nor effectiveness of the diagnose process could be guaranteed. In this project, we proposed a deep learning approach on ultra-widefield fundus (UWF) images for macula fovea detection. This study collected 2300 ultra-widefield fundus images from Shenzhen Aier Eye Hospital in China. Methods based on U-shape network (Unet) and Fully Convolutional Networks (FCN) are implemented on 1800 (before amplifying process) training fundus images, 400 (before amplifying process) validation images and 100 test images. Three professional ophthalmologists were invited to mark the fovea. A method from the anatomy perspective is investigated. This approach is derived from the spatial relationship between macula fovea and optic disc center in UWF. A set of parameters of this method is set based on the experience of ophthalmologists and verified to be effective. Results are measured by calculating the Euclidean distance between proposed approaches and the accurate grounded standard, which is detected by Ultra-widefield swept-source optical coherence tomograph (UWF-OCT) approach. Through a comparation of proposed methods, we conclude that, deep learning approach of Unet outperformed other methods on macula fovea detection tasks, by which outcomes obtained are comparable to grounded standard method.
Explore
Academic Units
Resource type
- Book (1)
- Journal Article (1)
- Report (1)