Your search
Results 2 resources
-
The prevalence of microplastics in the environment has become a major global conservation issue. One primary source of environmental microplastics is personal care and cosmetic products (PCCPs) containing microbeads. The market availability of PCCPs containing microbeads and the level of contamination of coastal sediments by microplastics was studied in one of the most densely populated cities in the world, Macao in China. We found that PCCPs containing microbeads are still widely available for sale in the region, with over 70% of surveyed PCCPs containing at least one type of microbeads as an ingredient, with polyethylene (PE) being the most common one. In an estimate, the use of PCCPs in the territory may release over 37 billion microbeads per year into the environment via wastewater treatment plants. The density of microplastics in coastal sediments varied between 259 and 1,743 items/L of sediment, amongst the highest reported in the world. The fraction of < 1 mm was the most abundant, representing an average of 98.6% of the total, and correlated positively with the abundance of larger sized fragments. The results show that although environmental pollution with microplastics released from PCCPs usage is significant, other sources, namely fragmentation of larger plastic debris, likely contribute more to the issue. The study highlights the magnitude of the problem at a local level and suggests possible mitigating strategies.
-
The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g–1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100–1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1–1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.
Explore
Academic Units
Resource type
- Journal Article (2)