Your search

In authors or contributors
  • Distinct patterns of gene expression often underlie intra- and intersexual differences, and the study of this set of coregulated genes is essential to understand the emergence of complex behavioural phenotypes. Here, we describe the development of a de novo transcriptome and brain gene expression profiles of wild-caught peacock blenny, Salaria pavo, an intertidal fish with sex-role reversal in courtship behaviour (i.e., females are the courting sex) and sequential alternative reproductive tactics in males (i.e., larger and older nest-holder males and smaller and younger sneaker males occur). Sneakers mimic both female's courtship behaviour and nuptial coloration to get access to nests and sneak fertilizations, and later in life transition into nest-holder males. Thus, this species offers the unique opportunity to study how the regulation of gene expression can contribute to intersex phenotypes and to the sequential expression of male and female behavioural phenotypes by the same individual. We found that at the whole brain level, expression of the sneaker tactic was paralleled by broader and divergent gene expression when compared to either females or nest-holder males, which were more similar between themselves. When looking at sex-biased transcripts, sneaker males are intersex rather than being either nest-holder or female-like, and their transcriptome is simultaneously demasculinized for nest-holder-biased transcripts and feminized for female-biased transcripts. These results indicate that evolutionary changes in reproductive plasticity can be achieved through regulation of gene expression, and in particular by varying the magnitude of expression of sex-biased genes, throughout the lifetime of the same individual.

  • Understanding consistent inter-individual variability in animal behaviour, known as personality traits, is essential for exploring the mechanisms and evolutionary consequences of behavioural diversity. Aggressive behaviour influences survival, resource acquisition, and reproduction, so clarifying individual differences can enhance our understanding of ecological dynamics and improve experimental design accuracy in behavioural studies. In this study, ornamental male Betta splendens, a model organism for aggression research, were analysed for intra- and inter-individual variability in aggressive responses to their mirror image-a standard method for assessing aggression in fish-once per week, and their consistency was evaluated over three consecutive weeks There were significant differences in aggressive behaviour across individuals, with coefficients of variation ranging from 29 to 60%. While most fish exhibited the full suite of aggressive displays, some showed no aggressive behaviour, while others only displayed threat behaviours but did not advance to the attacks. The consistency of individual threat and attack behaviours varied, but repeatability was high overall (intra-class correlation coefficients >= 0.5), indicating that individual fish have different levels of aggression. There was habituation to the mirror assay, with aggression decreasing significantly by the second week, though the degree of habituation, a form of learning, varied among individuals in some behaviours. Air-breathing frequency correlated positively with aggression behaviours and can be considered an indicator to infer aggression level in this species. These results indicate that inter-individual variation in aggressive behaviour and habituation to repeated testing using the mirror assay should be considered in aggression studies using B. splendens and potentially in other species.

Last update from database: 12/13/25, 7:01 PM (UTC)